L(s) = 1 | + (116. − 202. i)5-s + (−84.3 − 903. i)7-s + (−778. + 449. i)11-s + 6.65e3i·13-s + (1.20e4 + 2.09e4i)17-s + (1.31e4 + 7.58e3i)19-s + (4.56e4 + 2.63e4i)23-s + (1.18e4 + 2.05e4i)25-s + 3.62e4i·29-s + (1.31e5 − 7.56e4i)31-s + (−1.92e5 − 8.83e4i)35-s + (3.06e4 − 5.30e4i)37-s − 2.66e5·41-s + 3.23e5·43-s + (3.52e5 − 6.09e5i)47-s + ⋯ |
L(s) = 1 | + (0.417 − 0.722i)5-s + (−0.0929 − 0.995i)7-s + (−0.176 + 0.101i)11-s + 0.840i·13-s + (0.596 + 1.03i)17-s + (0.439 + 0.253i)19-s + (0.782 + 0.451i)23-s + (0.151 + 0.262i)25-s + 0.275i·29-s + (0.790 − 0.456i)31-s + (−0.758 − 0.348i)35-s + (0.0994 − 0.172i)37-s − 0.602·41-s + 0.619·43-s + (0.494 − 0.856i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.893+0.448i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.893+0.448i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.893+0.448i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.893+0.448i)
|
Particular Values
L(4) |
≈ |
2.421707736 |
L(21) |
≈ |
2.421707736 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(84.3+903.i)T |
good | 5 | 1+(−116.+202.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(778.−449.i)T+(9.74e6−1.68e7i)T2 |
| 13 | 1−6.65e3iT−6.27e7T2 |
| 17 | 1+(−1.20e4−2.09e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(−1.31e4−7.58e3i)T+(4.46e8+7.74e8i)T2 |
| 23 | 1+(−4.56e4−2.63e4i)T+(1.70e9+2.94e9i)T2 |
| 29 | 1−3.62e4iT−1.72e10T2 |
| 31 | 1+(−1.31e5+7.56e4i)T+(1.37e10−2.38e10i)T2 |
| 37 | 1+(−3.06e4+5.30e4i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1+2.66e5T+1.94e11T2 |
| 43 | 1−3.23e5T+2.71e11T2 |
| 47 | 1+(−3.52e5+6.09e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(−6.24e5+3.60e5i)T+(5.87e11−1.01e12i)T2 |
| 59 | 1+(8.13e4+1.40e5i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.14e6+6.59e5i)T+(1.57e12+2.72e12i)T2 |
| 67 | 1+(−1.74e6−3.01e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+3.93e6iT−9.09e12T2 |
| 73 | 1+(−1.29e6+7.45e5i)T+(5.52e12−9.56e12i)T2 |
| 79 | 1+(5.09e5−8.83e5i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+1.08e5T+2.71e13T2 |
| 89 | 1+(−4.21e6+7.30e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+3.46e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61060088055948102611799106291, −9.780829879875516391662480342249, −8.872158057187969162535914509445, −7.77380229757933012894364318187, −6.79034836218760961934260435843, −5.59341809759198064404040237858, −4.52531887230968603217056251814, −3.45940327895202494053923148318, −1.74764362884211710937530660187, −0.815627264133188656061681878104,
0.813885557592802965463263884743, 2.52355683956879776850884567225, 3.08579742006466132916765471644, 4.92565554462580401884882228345, 5.81769380681922821888498914134, 6.82304717772476062690606048032, 7.936002453567447534300755259444, 9.023412349482066246891972795643, 9.935902218435212212272371100157, 10.80343949842778124034256872832