Properties

Label 2-252-21.5-c7-0-9
Degree $2$
Conductor $252$
Sign $0.893 + 0.448i$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (116. − 202. i)5-s + (−84.3 − 903. i)7-s + (−778. + 449. i)11-s + 6.65e3i·13-s + (1.20e4 + 2.09e4i)17-s + (1.31e4 + 7.58e3i)19-s + (4.56e4 + 2.63e4i)23-s + (1.18e4 + 2.05e4i)25-s + 3.62e4i·29-s + (1.31e5 − 7.56e4i)31-s + (−1.92e5 − 8.83e4i)35-s + (3.06e4 − 5.30e4i)37-s − 2.66e5·41-s + 3.23e5·43-s + (3.52e5 − 6.09e5i)47-s + ⋯
L(s)  = 1  + (0.417 − 0.722i)5-s + (−0.0929 − 0.995i)7-s + (−0.176 + 0.101i)11-s + 0.840i·13-s + (0.596 + 1.03i)17-s + (0.439 + 0.253i)19-s + (0.782 + 0.451i)23-s + (0.151 + 0.262i)25-s + 0.275i·29-s + (0.790 − 0.456i)31-s + (−0.758 − 0.348i)35-s + (0.0994 − 0.172i)37-s − 0.602·41-s + 0.619·43-s + (0.494 − 0.856i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 + 0.448i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.893 + 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $0.893 + 0.448i$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ 0.893 + 0.448i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.421707736\)
\(L(\frac12)\) \(\approx\) \(2.421707736\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (84.3 + 903. i)T \)
good5 \( 1 + (-116. + 202. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
11 \( 1 + (778. - 449. i)T + (9.74e6 - 1.68e7i)T^{2} \)
13 \( 1 - 6.65e3iT - 6.27e7T^{2} \)
17 \( 1 + (-1.20e4 - 2.09e4i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (-1.31e4 - 7.58e3i)T + (4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-4.56e4 - 2.63e4i)T + (1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 - 3.62e4iT - 1.72e10T^{2} \)
31 \( 1 + (-1.31e5 + 7.56e4i)T + (1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + (-3.06e4 + 5.30e4i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + 2.66e5T + 1.94e11T^{2} \)
43 \( 1 - 3.23e5T + 2.71e11T^{2} \)
47 \( 1 + (-3.52e5 + 6.09e5i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (-6.24e5 + 3.60e5i)T + (5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (8.13e4 + 1.40e5i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (1.14e6 + 6.59e5i)T + (1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-1.74e6 - 3.01e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + 3.93e6iT - 9.09e12T^{2} \)
73 \( 1 + (-1.29e6 + 7.45e5i)T + (5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (5.09e5 - 8.83e5i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + 1.08e5T + 2.71e13T^{2} \)
89 \( 1 + (-4.21e6 + 7.30e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + 3.46e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61060088055948102611799106291, −9.780829879875516391662480342249, −8.872158057187969162535914509445, −7.77380229757933012894364318187, −6.79034836218760961934260435843, −5.59341809759198064404040237858, −4.52531887230968603217056251814, −3.45940327895202494053923148318, −1.74764362884211710937530660187, −0.815627264133188656061681878104, 0.813885557592802965463263884743, 2.52355683956879776850884567225, 3.08579742006466132916765471644, 4.92565554462580401884882228345, 5.81769380681922821888498914134, 6.82304717772476062690606048032, 7.936002453567447534300755259444, 9.023412349482066246891972795643, 9.935902218435212212272371100157, 10.80343949842778124034256872832

Graph of the $Z$-function along the critical line