L(s) = 1 | + (−0.433 + 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s + i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (−0.702 − 1.45i)19-s + (0.483 − 0.385i)21-s + (−0.900 + 0.433i)25-s + (0.974 − 0.222i)27-s − 0.618·28-s + (−0.602 + 0.137i)31-s + (−0.900 − 0.433i)36-s + (1.26 − 1.00i)37-s + ⋯ |
L(s) = 1 | + (−0.433 + 0.900i)3-s + (0.900 − 0.433i)4-s + (−0.556 − 0.268i)7-s + (−0.623 − 0.781i)9-s + i·12-s + (1.00 − 1.26i)13-s + (0.623 − 0.781i)16-s + (−0.702 − 1.45i)19-s + (0.483 − 0.385i)21-s + (−0.900 + 0.433i)25-s + (0.974 − 0.222i)27-s − 0.618·28-s + (−0.602 + 0.137i)31-s + (−0.900 − 0.433i)36-s + (1.26 − 1.00i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.145542786\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.145542786\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.433 - 0.900i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 7 | \( 1 + (0.556 + 0.268i)T + (0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (-1.00 + 1.26i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.702 + 1.45i)T + (-0.623 + 0.781i)T^{2} \) |
| 23 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (0.602 - 0.137i)T + (0.900 - 0.433i)T^{2} \) |
| 37 | \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.602 - 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.268 - 0.556i)T + (-0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 + (-1.00 - 1.26i)T + (-0.222 + 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-1.57 - 0.360i)T + (0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 + (1.26 - 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 97 | \( 1 + (0.268 + 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.218278967967678883869697808399, −8.335748486746748755914117474707, −7.34454685301721989199556781571, −6.54399052222372118006773460093, −5.85729793888005566789182911659, −5.32738637724755313157521604194, −4.15800088614387320604140877175, −3.34220847010021300115302694318, −2.47036986056455500924864118256, −0.797817780164104121578615914482,
1.55985506045017868383519535106, 2.23920681372071010424298958966, 3.38196743786940801088323937550, 4.26503958304585254053289367423, 5.71138572282976293052795614068, 6.35386885357157183836253055418, 6.57524465588171530155956331555, 7.70583127243682566074662677083, 8.117085351024557606930016739052, 9.015934185907422378292819824371