Properties

Label 4-2548e2-1.1-c0e2-0-3
Degree $4$
Conductor $6492304$
Sign $1$
Analytic cond. $1.61701$
Root an. cond. $1.12766$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·5-s + 8-s − 9-s − 2·10-s + 13-s − 16-s − 17-s + 18-s + 25-s − 26-s + 29-s + 34-s + 37-s + 2·40-s − 41-s − 2·45-s − 50-s − 2·53-s − 58-s − 61-s + 64-s + 2·65-s − 72-s + 2·73-s − 74-s − 2·80-s + ⋯
L(s)  = 1  − 2-s + 2·5-s + 8-s − 9-s − 2·10-s + 13-s − 16-s − 17-s + 18-s + 25-s − 26-s + 29-s + 34-s + 37-s + 2·40-s − 41-s − 2·45-s − 50-s − 2·53-s − 58-s − 61-s + 64-s + 2·65-s − 72-s + 2·73-s − 74-s − 2·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6492304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6492304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6492304\)    =    \(2^{4} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1.61701\)
Root analytic conductor: \(1.12766\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6492304,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9483691662\)
\(L(\frac12)\) \(\approx\) \(0.9483691662\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
7 \( 1 \)
13$C_2$ \( 1 - T + T^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.134265686445477997466758034518, −9.109312922090248561125235224728, −8.602880915421017714090601559586, −8.293430408380406659709396652305, −7.88603282786073451744839800341, −7.59555450829677879950861721934, −6.84516238872075444258641221146, −6.52193107307509999959785619766, −6.14839445268312170742590196049, −6.03528529196262288817207027704, −5.43923495156482472704035592094, −5.07378625171470167812575069536, −4.58117094386622105048296908422, −4.25743084762675764148233833270, −3.33084443091194683963830048843, −3.17900611390416159734678392462, −2.16843254727874637038499768582, −2.15064108310085343127380531621, −1.55916518585881704397207929260, −0.78377813071204582965551940846, 0.78377813071204582965551940846, 1.55916518585881704397207929260, 2.15064108310085343127380531621, 2.16843254727874637038499768582, 3.17900611390416159734678392462, 3.33084443091194683963830048843, 4.25743084762675764148233833270, 4.58117094386622105048296908422, 5.07378625171470167812575069536, 5.43923495156482472704035592094, 6.03528529196262288817207027704, 6.14839445268312170742590196049, 6.52193107307509999959785619766, 6.84516238872075444258641221146, 7.59555450829677879950861721934, 7.88603282786073451744839800341, 8.293430408380406659709396652305, 8.602880915421017714090601559586, 9.109312922090248561125235224728, 9.134265686445477997466758034518

Graph of the $Z$-function along the critical line