Properties

Label 2-2548-1.1-c1-0-36
Degree $2$
Conductor $2548$
Sign $-1$
Analytic cond. $20.3458$
Root an. cond. $4.51064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 9-s − 4·11-s − 13-s − 2·15-s + 2·17-s + 19-s − 7·23-s − 4·25-s − 4·27-s − 5·29-s + 9·31-s − 8·33-s − 2·37-s − 2·39-s − 2·41-s + 43-s − 45-s − 9·47-s + 4·51-s + 3·53-s + 4·55-s + 2·57-s − 14·61-s + 65-s + 10·67-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.516·15-s + 0.485·17-s + 0.229·19-s − 1.45·23-s − 4/5·25-s − 0.769·27-s − 0.928·29-s + 1.61·31-s − 1.39·33-s − 0.328·37-s − 0.320·39-s − 0.312·41-s + 0.152·43-s − 0.149·45-s − 1.31·47-s + 0.560·51-s + 0.412·53-s + 0.539·55-s + 0.264·57-s − 1.79·61-s + 0.124·65-s + 1.22·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2548\)    =    \(2^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(20.3458\)
Root analytic conductor: \(4.51064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2548,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 5 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.237951521260646389256048043119, −7.952979788134185991537908763708, −7.38722006146820504716353926084, −6.18053403972595335678929800447, −5.35458385451819767395782385034, −4.35286193268314891819256010308, −3.47864491024103512148202589639, −2.74596489705447864537326689779, −1.85652707770394323743804698835, 0, 1.85652707770394323743804698835, 2.74596489705447864537326689779, 3.47864491024103512148202589639, 4.35286193268314891819256010308, 5.35458385451819767395782385034, 6.18053403972595335678929800447, 7.38722006146820504716353926084, 7.952979788134185991537908763708, 8.237951521260646389256048043119

Graph of the $Z$-function along the critical line