L(s) = 1 | + (1 − 1.73i)3-s + (1.5 − 2.59i)5-s + (−0.499 − 0.866i)9-s + (−3.5 + 0.866i)13-s + (−3 − 5.19i)15-s + 3·17-s + (−1 − 1.73i)19-s − 6·23-s + (−2 − 3.46i)25-s + 4.00·27-s + (−4.5 − 7.79i)29-s + (−1 − 1.73i)31-s − 7·37-s + (−2 + 6.92i)39-s + (−1.5 − 2.59i)41-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s + (0.670 − 1.16i)5-s + (−0.166 − 0.288i)9-s + (−0.970 + 0.240i)13-s + (−0.774 − 1.34i)15-s + 0.727·17-s + (−0.229 − 0.397i)19-s − 1.25·23-s + (−0.400 − 0.692i)25-s + 0.769·27-s + (−0.835 − 1.44i)29-s + (−0.179 − 0.311i)31-s − 1.15·37-s + (−0.320 + 1.10i)39-s + (−0.234 − 0.405i)41-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.927+0.374i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(−0.927+0.374i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.927+0.374i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(1745,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), −0.927+0.374i)
|
Particular Values
L(1) |
≈ |
1.959433275 |
L(21) |
≈ |
1.959433275 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(3.5−0.866i)T |
good | 3 | 1+(−1+1.73i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.5+2.59i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+(4.5+7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+7T+37T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2+3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3+5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(4.5+7.79i)T+(−26.5+45.8i)T2 |
| 59 | 1+59T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1−1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3+5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2+3.46i)T+(−39.5−68.4i)T2 |
| 83 | 1−12T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+(7−12.1i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.452664844453679239189769093960, −7.85696181145068780415712598843, −7.21118423529428943881744979069, −6.28158311034488783967551418528, −5.43536537940392242209814991570, −4.74056786212317888687980613169, −3.64901296651492747226524531439, −2.21151771073269309167050483215, −1.88210027625719964194518484341, −0.54985498454079835692019597952,
1.79229660327676767780509767249, 2.87204148640304126630083330264, 3.39934445629807579001729960452, 4.35624408220353777111013392431, 5.32636932908596543647770963037, 6.10141516748893492264726136130, 6.99470481075728621971243068380, 7.68043368172599761131179078276, 8.619464157148427778335960365904, 9.497489877109192395049182101284