L(s) = 1 | + (1 − 1.73i)3-s + (1.5 − 2.59i)5-s + (−0.499 − 0.866i)9-s + (−3.5 + 0.866i)13-s + (−3 − 5.19i)15-s + 3·17-s + (−1 − 1.73i)19-s − 6·23-s + (−2 − 3.46i)25-s + 4.00·27-s + (−4.5 − 7.79i)29-s + (−1 − 1.73i)31-s − 7·37-s + (−2 + 6.92i)39-s + (−1.5 − 2.59i)41-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s + (0.670 − 1.16i)5-s + (−0.166 − 0.288i)9-s + (−0.970 + 0.240i)13-s + (−0.774 − 1.34i)15-s + 0.727·17-s + (−0.229 − 0.397i)19-s − 1.25·23-s + (−0.400 − 0.692i)25-s + 0.769·27-s + (−0.835 − 1.44i)29-s + (−0.179 − 0.311i)31-s − 1.15·37-s + (−0.320 + 1.10i)39-s + (−0.234 − 0.405i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 + 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.959433275\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.959433275\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
good | 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + (4.5 + 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7T + 37T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.5 + 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (7 - 12.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.452664844453679239189769093960, −7.85696181145068780415712598843, −7.21118423529428943881744979069, −6.28158311034488783967551418528, −5.43536537940392242209814991570, −4.74056786212317888687980613169, −3.64901296651492747226524531439, −2.21151771073269309167050483215, −1.88210027625719964194518484341, −0.54985498454079835692019597952,
1.79229660327676767780509767249, 2.87204148640304126630083330264, 3.39934445629807579001729960452, 4.35624408220353777111013392431, 5.32636932908596543647770963037, 6.10141516748893492264726136130, 6.99470481075728621971243068380, 7.68043368172599761131179078276, 8.619464157148427778335960365904, 9.497489877109192395049182101284