L(s) = 1 | + 3·3-s − 5-s + 6·9-s − 4·11-s + 8·13-s − 3·15-s − 11·23-s + 8·25-s − 3·27-s + 22·29-s − 5·31-s − 12·33-s − 27·37-s + 24·39-s − 12·41-s + 8·43-s − 6·45-s + 4·47-s − 18·53-s + 4·55-s − 16·59-s + 10·61-s − 8·65-s + 2·67-s − 33·69-s − 10·71-s − 7·73-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 0.447·5-s + 2·9-s − 1.20·11-s + 2.21·13-s − 0.774·15-s − 2.29·23-s + 8/5·25-s − 0.577·27-s + 4.08·29-s − 0.898·31-s − 2.08·33-s − 4.43·37-s + 3.84·39-s − 1.87·41-s + 1.21·43-s − 0.894·45-s + 0.583·47-s − 2.47·53-s + 0.539·55-s − 2.08·59-s + 1.28·61-s − 0.992·65-s + 0.244·67-s − 3.97·69-s − 1.18·71-s − 0.819·73-s + ⋯ |
Λ(s)=(=((216⋅716⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅716⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.791871706 |
L(21) |
≈ |
1.791871706 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | (1−T)8 |
good | 3 | (1−pT+pT2+2pT3−8pT4+2p2T5+p3T6−p4T7+p4T8)(1+2pT3+pT4+2p2T5+p4T8) |
| 5 | 1+T−7T2−6T3+11T4−T5+46T6+87T7−104T8+87pT9+46p2T10−p3T11+11p4T12−6p5T13−7p6T14+p7T15+p8T16 |
| 11 | 1+4T−10T2+36T3+311T4−574T5−2T6+6246T7−14120T8+6246pT9−2p2T10−574p3T11+311p4T12+36p5T13−10p6T14+4p7T15+p8T16 |
| 17 | 1−26T2+120T3+277T4−2580T5+8254T6+29100T7−180884T8+29100pT9+8254p2T10−2580p3T11+277p4T12+120p5T13−26p6T14+p8T16 |
| 19 | 1−64T2+12T3+2365T4−498T5−64540T6+4206T7+1386700T8+4206pT9−64540p2T10−498p3T11+2365p4T12+12p5T13−64p6T14+p8T16 |
| 23 | 1+11T−7T2−174T3+2849T4+13093T5−57770T6+44955T7+2974330T8+44955pT9−57770p2T10+13093p3T11+2849p4T12−174p5T13−7p6T14+11p7T15+p8T16 |
| 29 | (1−11T+89T2−506T3+2734T4−506pT5+89p2T6−11p3T7+p4T8)2 |
| 31 | 1+5T−33T2−608T3−823T4+20541T5+130846T6−315001T7−5145042T8−315001pT9+130846p2T10+20541p3T11−823p4T12−608p5T13−33p6T14+5p7T15+p8T16 |
| 37 | 1+27T+317T2+2922T3+29599T4+252777T5+1729142T6+12208317T7+82743664T8+12208317pT9+1729142p2T10+252777p3T11+29599p4T12+2922p5T13+317p6T14+27p7T15+p8T16 |
| 41 | (1+6T+4pT2+702T3+10062T4+702pT5+4p3T6+6p3T7+p4T8)2 |
| 43 | (1−4T+148T2−496T3+9046T4−496pT5+148p2T6−4p3T7+p4T8)2 |
| 47 | 1−4T−118T2−132T3+9551T4+24214T5−423158T6−589518T7+14574472T8−589518pT9−423158p2T10+24214p3T11+9551p4T12−132p5T13−118p6T14−4p7T15+p8T16 |
| 53 | 1+18T+40T2−192T3+9691T4+57480T5−498428T6−1193106T7+28851040T8−1193106pT9−498428p2T10+57480p3T11+9691p4T12−192p5T13+40p6T14+18p7T15+p8T16 |
| 59 | 1+16T+26T2−252T3+3803T4+3662T5−446918T6−43710pT7−134704pT8−43710p2T9−446918p2T10+3662p3T11+3803p4T12−252p5T13+26p6T14+16p7T15+p8T16 |
| 61 | 1−10T−24T2+160T3−37T4+38760T5−57404T6−2183350T7+15224832T8−2183350pT9−57404p2T10+38760p3T11−37p4T12+160p5T13−24p6T14−10p7T15+p8T16 |
| 67 | 1−2T−138T2+104T3+9779T4−558T5−133058T6−124388T7−10842816T8−124388pT9−133058p2T10−558p3T11+9779p4T12+104p5T13−138p6T14−2p7T15+p8T16 |
| 71 | (1+5T+17T2+200T3+4540T4+200pT5+17p2T6+5p3T7+p4T8)2 |
| 73 | 1+7T−93T2+1088T3+14315T4−96597T5+662386T6+8704183T7−59722104T8+8704183pT9+662386p2T10−96597p3T11+14315p4T12+1088p5T13−93p6T14+7p7T15+p8T16 |
| 79 | 1+17T+15T2−1664T3−10375T4+37557T5+477130T6+854183T7−6106818T8+854183pT9+477130p2T10+37557p3T11−10375p4T12−1664p5T13+15p6T14+17p7T15+p8T16 |
| 83 | (1−6T+224T2−1386T3+24702T4−1386pT5+224p2T6−6p3T7+p4T8)2 |
| 89 | 1+21T+205T2+3774T3+44467T4+241719T5+3262366T6+28535535T7+88183516T8+28535535pT9+3262366p2T10+241719p3T11+44467p4T12+3774p5T13+205p6T14+21p7T15+p8T16 |
| 97 | (1+8T+340T2+1916T3+46894T4+1916pT5+340p2T6+8p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.61914198579697736177036990906, −3.58416118141684586700075081828, −3.54950848688825823330494197906, −3.45552658800052575506872833807, −3.34239639308767275478762647485, −3.05905441677034375387855924662, −2.98364858458576681767738987899, −2.81245077354064279671794595459, −2.76519662881287111236824690571, −2.67629471545837366840679468822, −2.58364410197721044707594855874, −2.36473968577114826065690033881, −2.34543182922508430016804538687, −1.90171229427781406769804936287, −1.82020205940817116935194548616, −1.76386360523683778367714951026, −1.73905288553886228804944013450, −1.59695615221545556212158573819, −1.39136273582685947586855877262, −1.28282915371498104067825995852, −1.23899854170823181216399056247, −0.72042477112112005480562996158, −0.50900994753450451069204247102, −0.48779948226781878516914523499, −0.088413746940213388209939123855,
0.088413746940213388209939123855, 0.48779948226781878516914523499, 0.50900994753450451069204247102, 0.72042477112112005480562996158, 1.23899854170823181216399056247, 1.28282915371498104067825995852, 1.39136273582685947586855877262, 1.59695615221545556212158573819, 1.73905288553886228804944013450, 1.76386360523683778367714951026, 1.82020205940817116935194548616, 1.90171229427781406769804936287, 2.34543182922508430016804538687, 2.36473968577114826065690033881, 2.58364410197721044707594855874, 2.67629471545837366840679468822, 2.76519662881287111236824690571, 2.81245077354064279671794595459, 2.98364858458576681767738987899, 3.05905441677034375387855924662, 3.34239639308767275478762647485, 3.45552658800052575506872833807, 3.54950848688825823330494197906, 3.58416118141684586700075081828, 3.61914198579697736177036990906
Plot not available for L-functions of degree greater than 10.