Properties

Label 16-2548e8-1.1-c1e8-0-1
Degree $16$
Conductor $1.777\times 10^{27}$
Sign $1$
Analytic cond. $2.93637\times 10^{10}$
Root an. cond. $4.51064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s − 4·11-s + 8·13-s − 3·15-s − 11·23-s + 8·25-s − 3·27-s + 22·29-s − 5·31-s − 12·33-s − 27·37-s + 24·39-s − 12·41-s + 8·43-s − 6·45-s + 4·47-s − 18·53-s + 4·55-s − 16·59-s + 10·61-s − 8·65-s + 2·67-s − 33·69-s − 10·71-s − 7·73-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s − 1.20·11-s + 2.21·13-s − 0.774·15-s − 2.29·23-s + 8/5·25-s − 0.577·27-s + 4.08·29-s − 0.898·31-s − 2.08·33-s − 4.43·37-s + 3.84·39-s − 1.87·41-s + 1.21·43-s − 0.894·45-s + 0.583·47-s − 2.47·53-s + 0.539·55-s − 2.08·59-s + 1.28·61-s − 0.992·65-s + 0.244·67-s − 3.97·69-s − 1.18·71-s − 0.819·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 7^{16} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(2.93637\times 10^{10}\)
Root analytic conductor: \(4.51064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 7^{16} \cdot 13^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.791871706\)
\(L(\frac12)\) \(\approx\) \(1.791871706\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( ( 1 - T )^{8} \)
good3 \( ( 1 - p T + p T^{2} + 2 p T^{3} - 8 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} - p^{4} T^{7} + p^{4} T^{8} )( 1 + 2 p T^{3} + p T^{4} + 2 p^{2} T^{5} + p^{4} T^{8} ) \)
5 \( 1 + T - 7 T^{2} - 6 T^{3} + 11 T^{4} - T^{5} + 46 T^{6} + 87 T^{7} - 104 T^{8} + 87 p T^{9} + 46 p^{2} T^{10} - p^{3} T^{11} + 11 p^{4} T^{12} - 6 p^{5} T^{13} - 7 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 4 T - 10 T^{2} + 36 T^{3} + 311 T^{4} - 574 T^{5} - 2 T^{6} + 6246 T^{7} - 14120 T^{8} + 6246 p T^{9} - 2 p^{2} T^{10} - 574 p^{3} T^{11} + 311 p^{4} T^{12} + 36 p^{5} T^{13} - 10 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 - 26 T^{2} + 120 T^{3} + 277 T^{4} - 2580 T^{5} + 8254 T^{6} + 29100 T^{7} - 180884 T^{8} + 29100 p T^{9} + 8254 p^{2} T^{10} - 2580 p^{3} T^{11} + 277 p^{4} T^{12} + 120 p^{5} T^{13} - 26 p^{6} T^{14} + p^{8} T^{16} \)
19 \( 1 - 64 T^{2} + 12 T^{3} + 2365 T^{4} - 498 T^{5} - 64540 T^{6} + 4206 T^{7} + 1386700 T^{8} + 4206 p T^{9} - 64540 p^{2} T^{10} - 498 p^{3} T^{11} + 2365 p^{4} T^{12} + 12 p^{5} T^{13} - 64 p^{6} T^{14} + p^{8} T^{16} \)
23 \( 1 + 11 T - 7 T^{2} - 174 T^{3} + 2849 T^{4} + 13093 T^{5} - 57770 T^{6} + 44955 T^{7} + 2974330 T^{8} + 44955 p T^{9} - 57770 p^{2} T^{10} + 13093 p^{3} T^{11} + 2849 p^{4} T^{12} - 174 p^{5} T^{13} - 7 p^{6} T^{14} + 11 p^{7} T^{15} + p^{8} T^{16} \)
29 \( ( 1 - 11 T + 89 T^{2} - 506 T^{3} + 2734 T^{4} - 506 p T^{5} + 89 p^{2} T^{6} - 11 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
31 \( 1 + 5 T - 33 T^{2} - 608 T^{3} - 823 T^{4} + 20541 T^{5} + 130846 T^{6} - 315001 T^{7} - 5145042 T^{8} - 315001 p T^{9} + 130846 p^{2} T^{10} + 20541 p^{3} T^{11} - 823 p^{4} T^{12} - 608 p^{5} T^{13} - 33 p^{6} T^{14} + 5 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 + 27 T + 317 T^{2} + 2922 T^{3} + 29599 T^{4} + 252777 T^{5} + 1729142 T^{6} + 12208317 T^{7} + 82743664 T^{8} + 12208317 p T^{9} + 1729142 p^{2} T^{10} + 252777 p^{3} T^{11} + 29599 p^{4} T^{12} + 2922 p^{5} T^{13} + 317 p^{6} T^{14} + 27 p^{7} T^{15} + p^{8} T^{16} \)
41 \( ( 1 + 6 T + 4 p T^{2} + 702 T^{3} + 10062 T^{4} + 702 p T^{5} + 4 p^{3} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - 4 T + 148 T^{2} - 496 T^{3} + 9046 T^{4} - 496 p T^{5} + 148 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( 1 - 4 T - 118 T^{2} - 132 T^{3} + 9551 T^{4} + 24214 T^{5} - 423158 T^{6} - 589518 T^{7} + 14574472 T^{8} - 589518 p T^{9} - 423158 p^{2} T^{10} + 24214 p^{3} T^{11} + 9551 p^{4} T^{12} - 132 p^{5} T^{13} - 118 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 + 18 T + 40 T^{2} - 192 T^{3} + 9691 T^{4} + 57480 T^{5} - 498428 T^{6} - 1193106 T^{7} + 28851040 T^{8} - 1193106 p T^{9} - 498428 p^{2} T^{10} + 57480 p^{3} T^{11} + 9691 p^{4} T^{12} - 192 p^{5} T^{13} + 40 p^{6} T^{14} + 18 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 16 T + 26 T^{2} - 252 T^{3} + 3803 T^{4} + 3662 T^{5} - 446918 T^{6} - 43710 p T^{7} - 134704 p T^{8} - 43710 p^{2} T^{9} - 446918 p^{2} T^{10} + 3662 p^{3} T^{11} + 3803 p^{4} T^{12} - 252 p^{5} T^{13} + 26 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 - 10 T - 24 T^{2} + 160 T^{3} - 37 T^{4} + 38760 T^{5} - 57404 T^{6} - 2183350 T^{7} + 15224832 T^{8} - 2183350 p T^{9} - 57404 p^{2} T^{10} + 38760 p^{3} T^{11} - 37 p^{4} T^{12} + 160 p^{5} T^{13} - 24 p^{6} T^{14} - 10 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 - 2 T - 138 T^{2} + 104 T^{3} + 9779 T^{4} - 558 T^{5} - 133058 T^{6} - 124388 T^{7} - 10842816 T^{8} - 124388 p T^{9} - 133058 p^{2} T^{10} - 558 p^{3} T^{11} + 9779 p^{4} T^{12} + 104 p^{5} T^{13} - 138 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
71 \( ( 1 + 5 T + 17 T^{2} + 200 T^{3} + 4540 T^{4} + 200 p T^{5} + 17 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( 1 + 7 T - 93 T^{2} + 1088 T^{3} + 14315 T^{4} - 96597 T^{5} + 662386 T^{6} + 8704183 T^{7} - 59722104 T^{8} + 8704183 p T^{9} + 662386 p^{2} T^{10} - 96597 p^{3} T^{11} + 14315 p^{4} T^{12} + 1088 p^{5} T^{13} - 93 p^{6} T^{14} + 7 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 17 T + 15 T^{2} - 1664 T^{3} - 10375 T^{4} + 37557 T^{5} + 477130 T^{6} + 854183 T^{7} - 6106818 T^{8} + 854183 p T^{9} + 477130 p^{2} T^{10} + 37557 p^{3} T^{11} - 10375 p^{4} T^{12} - 1664 p^{5} T^{13} + 15 p^{6} T^{14} + 17 p^{7} T^{15} + p^{8} T^{16} \)
83 \( ( 1 - 6 T + 224 T^{2} - 1386 T^{3} + 24702 T^{4} - 1386 p T^{5} + 224 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
89 \( 1 + 21 T + 205 T^{2} + 3774 T^{3} + 44467 T^{4} + 241719 T^{5} + 3262366 T^{6} + 28535535 T^{7} + 88183516 T^{8} + 28535535 p T^{9} + 3262366 p^{2} T^{10} + 241719 p^{3} T^{11} + 44467 p^{4} T^{12} + 3774 p^{5} T^{13} + 205 p^{6} T^{14} + 21 p^{7} T^{15} + p^{8} T^{16} \)
97 \( ( 1 + 8 T + 340 T^{2} + 1916 T^{3} + 46894 T^{4} + 1916 p T^{5} + 340 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.61914198579697736177036990906, −3.58416118141684586700075081828, −3.54950848688825823330494197906, −3.45552658800052575506872833807, −3.34239639308767275478762647485, −3.05905441677034375387855924662, −2.98364858458576681767738987899, −2.81245077354064279671794595459, −2.76519662881287111236824690571, −2.67629471545837366840679468822, −2.58364410197721044707594855874, −2.36473968577114826065690033881, −2.34543182922508430016804538687, −1.90171229427781406769804936287, −1.82020205940817116935194548616, −1.76386360523683778367714951026, −1.73905288553886228804944013450, −1.59695615221545556212158573819, −1.39136273582685947586855877262, −1.28282915371498104067825995852, −1.23899854170823181216399056247, −0.72042477112112005480562996158, −0.50900994753450451069204247102, −0.48779948226781878516914523499, −0.088413746940213388209939123855, 0.088413746940213388209939123855, 0.48779948226781878516914523499, 0.50900994753450451069204247102, 0.72042477112112005480562996158, 1.23899854170823181216399056247, 1.28282915371498104067825995852, 1.39136273582685947586855877262, 1.59695615221545556212158573819, 1.73905288553886228804944013450, 1.76386360523683778367714951026, 1.82020205940817116935194548616, 1.90171229427781406769804936287, 2.34543182922508430016804538687, 2.36473968577114826065690033881, 2.58364410197721044707594855874, 2.67629471545837366840679468822, 2.76519662881287111236824690571, 2.81245077354064279671794595459, 2.98364858458576681767738987899, 3.05905441677034375387855924662, 3.34239639308767275478762647485, 3.45552658800052575506872833807, 3.54950848688825823330494197906, 3.58416118141684586700075081828, 3.61914198579697736177036990906

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.