L(s) = 1 | + 5-s + (1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (−3.5 + 0.866i)13-s + (−1.5 + 2.59i)17-s + (−3 + 5.19i)19-s + (2 + 3.46i)23-s − 4·25-s + (3.5 + 6.06i)29-s − 4·31-s + (−4.5 − 7.79i)37-s + (4.5 + 7.79i)41-s + (−5 + 8.66i)43-s + (1.5 − 2.59i)45-s + 2·47-s + ⋯ |
L(s) = 1 | + 0.447·5-s + (0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (−0.970 + 0.240i)13-s + (−0.363 + 0.630i)17-s + (−0.688 + 1.19i)19-s + (0.417 + 0.722i)23-s − 0.800·25-s + (0.649 + 1.12i)29-s − 0.718·31-s + (−0.739 − 1.28i)37-s + (0.702 + 1.21i)41-s + (−0.762 + 1.32i)43-s + (0.223 − 0.387i)45-s + 0.291·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.428628038\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.428628038\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.5 - 6.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (4.5 + 7.79i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5 - 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-7 + 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4 - 6.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5 - 8.66i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 7T + 73T^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.237345327956482721394767972710, −8.392251054166184215278769066262, −7.43196520287299727545806214717, −6.79723032020176407291172815408, −6.07640451188673910534696769876, −5.20859730866804991322825135776, −4.21834833239435695751417974752, −3.55765056546726034712774659494, −2.22336974564856587144707062007, −1.38768714962326992062310427925,
0.46032145690407628496447076092, 2.07222224257763937184449827180, 2.64698627841450364886970071717, 3.99833159966872107770044250378, 4.85239784626783516568776957328, 5.44206600500674848502534607058, 6.54261187815172419624591523247, 7.11196513489318938581663957820, 7.931956435518194900755251474421, 8.797434169369425914973336238245