Properties

Label 4-2548e2-1.1-c1e2-0-12
Degree $4$
Conductor $6492304$
Sign $1$
Analytic cond. $413.954$
Root an. cond. $4.51064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 2·5-s + 21·9-s − 10·11-s − 2·13-s − 12·15-s − 3·17-s − 6·19-s + 23-s + 5·25-s + 54·27-s + 29-s + 8·31-s − 60·33-s − 3·37-s − 12·39-s − 3·41-s − 43-s − 42·45-s − 4·47-s − 18·51-s + 6·53-s + 20·55-s − 36·57-s − 5·59-s − 10·61-s + 4·65-s + ⋯
L(s)  = 1  + 3.46·3-s − 0.894·5-s + 7·9-s − 3.01·11-s − 0.554·13-s − 3.09·15-s − 0.727·17-s − 1.37·19-s + 0.208·23-s + 25-s + 10.3·27-s + 0.185·29-s + 1.43·31-s − 10.4·33-s − 0.493·37-s − 1.92·39-s − 0.468·41-s − 0.152·43-s − 6.26·45-s − 0.583·47-s − 2.52·51-s + 0.824·53-s + 2.69·55-s − 4.76·57-s − 0.650·59-s − 1.28·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6492304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6492304 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6492304\)    =    \(2^{4} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(413.954\)
Root analytic conductor: \(4.51064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6492304,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.953504568\)
\(L(\frac12)\) \(\approx\) \(4.953504568\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - T - 22 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - T - 28 T^{2} - p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 3 T - 28 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + T - 42 T^{2} + p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 4 T - 31 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 6 T - 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 5 T - 34 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 11 T + 50 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 14 T + 123 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 9 T - 8 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - T - 96 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.923781032136109116442443337297, −8.546453361308465543567623165293, −8.390234108052513344028370159535, −7.936638125327999264854198614958, −7.67852793221974912083613531525, −7.67701831751439767960377740049, −7.15112879071930192539196385682, −6.56897137624714705523716885909, −6.34209079238866235784715179709, −5.20981897835808206586528465806, −4.93748600024629697787379997784, −4.63590795681710940761514171071, −4.12969618109156314590874138866, −3.66027137218395960404644135829, −3.24271396632944491419866574990, −2.76188331593670224689884123995, −2.62352640094111975930607566512, −2.17413327539503297473762276189, −1.80764862383456807106165038138, −0.53352339913839038338613375499, 0.53352339913839038338613375499, 1.80764862383456807106165038138, 2.17413327539503297473762276189, 2.62352640094111975930607566512, 2.76188331593670224689884123995, 3.24271396632944491419866574990, 3.66027137218395960404644135829, 4.12969618109156314590874138866, 4.63590795681710940761514171071, 4.93748600024629697787379997784, 5.20981897835808206586528465806, 6.34209079238866235784715179709, 6.56897137624714705523716885909, 7.15112879071930192539196385682, 7.67701831751439767960377740049, 7.67852793221974912083613531525, 7.936638125327999264854198614958, 8.390234108052513344028370159535, 8.546453361308465543567623165293, 8.923781032136109116442443337297

Graph of the $Z$-function along the critical line