L(s) = 1 | + 6·3-s − 2·5-s + 21·9-s − 10·11-s − 2·13-s − 12·15-s − 3·17-s − 6·19-s + 23-s + 5·25-s + 54·27-s + 29-s + 8·31-s − 60·33-s − 3·37-s − 12·39-s − 3·41-s − 43-s − 42·45-s − 4·47-s − 18·51-s + 6·53-s + 20·55-s − 36·57-s − 5·59-s − 10·61-s + 4·65-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 0.894·5-s + 7·9-s − 3.01·11-s − 0.554·13-s − 3.09·15-s − 0.727·17-s − 1.37·19-s + 0.208·23-s + 25-s + 10.3·27-s + 0.185·29-s + 1.43·31-s − 10.4·33-s − 0.493·37-s − 1.92·39-s − 0.468·41-s − 0.152·43-s − 6.26·45-s − 0.583·47-s − 2.52·51-s + 0.824·53-s + 2.69·55-s − 4.76·57-s − 0.650·59-s − 1.28·61-s + 0.496·65-s + ⋯ |
Λ(s)=(=(6492304s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(6492304s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6492304
= 24⋅74⋅132
|
Sign: |
1
|
Analytic conductor: |
413.954 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 6492304, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.953504568 |
L(21) |
≈ |
4.953504568 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 13 | C2 | 1+2T+pT2 |
good | 3 | C2 | (1−pT+pT2)2 |
| 5 | C22 | 1+2T−T2+2pT3+p2T4 |
| 11 | C2 | (1+5T+pT2)2 |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 19 | C2 | (1+3T+pT2)2 |
| 23 | C22 | 1−T−22T2−pT3+p2T4 |
| 29 | C22 | 1−T−28T2−pT3+p2T4 |
| 31 | C22 | 1−8T+33T2−8pT3+p2T4 |
| 37 | C22 | 1+3T−28T2+3pT3+p2T4 |
| 41 | C22 | 1+3T−32T2+3pT3+p2T4 |
| 43 | C22 | 1+T−42T2+pT3+p2T4 |
| 47 | C22 | 1+4T−31T2+4pT3+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1+5T−34T2+5pT3+p2T4 |
| 61 | C2 | (1+5T+pT2)2 |
| 67 | C2 | (1−7T+pT2)2 |
| 71 | C22 | 1−11T+50T2−11pT3+p2T4 |
| 73 | C22 | 1+14T+123T2+14pT3+p2T4 |
| 79 | C2 | (1−17T+pT2)(1+13T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C22 | 1−9T−8T2−9pT3+p2T4 |
| 97 | C22 | 1−T−96T2−pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.923781032136109116442443337297, −8.546453361308465543567623165293, −8.390234108052513344028370159535, −7.936638125327999264854198614958, −7.67852793221974912083613531525, −7.67701831751439767960377740049, −7.15112879071930192539196385682, −6.56897137624714705523716885909, −6.34209079238866235784715179709, −5.20981897835808206586528465806, −4.93748600024629697787379997784, −4.63590795681710940761514171071, −4.12969618109156314590874138866, −3.66027137218395960404644135829, −3.24271396632944491419866574990, −2.76188331593670224689884123995, −2.62352640094111975930607566512, −2.17413327539503297473762276189, −1.80764862383456807106165038138, −0.53352339913839038338613375499,
0.53352339913839038338613375499, 1.80764862383456807106165038138, 2.17413327539503297473762276189, 2.62352640094111975930607566512, 2.76188331593670224689884123995, 3.24271396632944491419866574990, 3.66027137218395960404644135829, 4.12969618109156314590874138866, 4.63590795681710940761514171071, 4.93748600024629697787379997784, 5.20981897835808206586528465806, 6.34209079238866235784715179709, 6.56897137624714705523716885909, 7.15112879071930192539196385682, 7.67701831751439767960377740049, 7.67852793221974912083613531525, 7.936638125327999264854198614958, 8.390234108052513344028370159535, 8.546453361308465543567623165293, 8.923781032136109116442443337297