L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 3·7-s − 8-s + 9-s − 5·11-s + 12-s + 2·13-s + 3·14-s + 16-s − 17-s − 18-s + 19-s − 3·21-s + 5·22-s − 6·23-s − 24-s − 2·26-s + 27-s − 3·28-s + 10·29-s + 5·31-s − 32-s − 5·33-s + 34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s − 1.50·11-s + 0.288·12-s + 0.554·13-s + 0.801·14-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.229·19-s − 0.654·21-s + 1.06·22-s − 1.25·23-s − 0.204·24-s − 0.392·26-s + 0.192·27-s − 0.566·28-s + 1.85·29-s + 0.898·31-s − 0.176·32-s − 0.870·33-s + 0.171·34-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.145741418 |
L(21) |
≈ |
1.145741418 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 5 | 1 |
| 17 | 1+T |
good | 7 | 1+3T+pT2 |
| 11 | 1+5T+pT2 |
| 13 | 1−2T+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−10T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1+3T+pT2 |
| 53 | 1−T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−12T+pT2 |
| 79 | 1−5T+pT2 |
| 83 | 1+18T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.810504122961107276296448912027, −8.166360002861459473388767211292, −7.65413840568452465144147907114, −6.61072040183152185812517360312, −6.11532498490045678119089308595, −4.99734969623358779987712591625, −3.84795020439861036846716122060, −2.90043687921487017392042208715, −2.30560140959508307974254558712, −0.70376376823350907184750688404,
0.70376376823350907184750688404, 2.30560140959508307974254558712, 2.90043687921487017392042208715, 3.84795020439861036846716122060, 4.99734969623358779987712591625, 6.11532498490045678119089308595, 6.61072040183152185812517360312, 7.65413840568452465144147907114, 8.166360002861459473388767211292, 8.810504122961107276296448912027