L(s) = 1 | − 4-s − 9-s − 6·11-s + 16-s + 14·19-s − 12·29-s − 14·31-s + 36-s − 12·41-s + 6·44-s + 13·49-s − 20·61-s − 64-s − 12·71-s − 14·76-s − 34·79-s + 81-s + 24·89-s + 6·99-s − 30·101-s + 14·109-s + 12·116-s + 5·121-s + 14·124-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1/3·9-s − 1.80·11-s + 1/4·16-s + 3.21·19-s − 2.22·29-s − 2.51·31-s + 1/6·36-s − 1.87·41-s + 0.904·44-s + 13/7·49-s − 2.56·61-s − 1/8·64-s − 1.42·71-s − 1.60·76-s − 3.82·79-s + 1/9·81-s + 2.54·89-s + 0.603·99-s − 2.98·101-s + 1.34·109-s + 1.11·116-s + 5/11·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(6502500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(6502500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6502500
= 22⋅32⋅54⋅172
|
Sign: |
1
|
Analytic conductor: |
414.605 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 6502500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.2686113729 |
L(21) |
≈ |
0.2686113729 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | | 1 |
| 17 | C2 | 1+T2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 19 | C2 | (1−7T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1+7T+pT2)2 |
| 37 | C22 | 1−25T2+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−85T2+p2T4 |
| 47 | C22 | 1−13T2+p2T4 |
| 53 | C22 | 1−97T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−109T2+p2T4 |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+17T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1−12T+pT2)2 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.279353336671326402025373360324, −8.756441586066739600777039885811, −8.395875628819618426841910050780, −7.69990400716311455162435486876, −7.52431935486464251488106197899, −7.34587201565838584997364620744, −7.18922747516542450082361005697, −6.21514010011937852838357450134, −5.80541278797801446915087566900, −5.34506079162002874048220604551, −5.32972968541709628887106147473, −5.07838740298404740682706793087, −4.26653256048889989246882328442, −3.82056319352285405482983521168, −3.22297936132339876477210583767, −3.13277066085658569817202219749, −2.51957767955154180736522142661, −1.72632459164441281525344687421, −1.33781476584183833567644085153, −0.17387535493892419288918454133,
0.17387535493892419288918454133, 1.33781476584183833567644085153, 1.72632459164441281525344687421, 2.51957767955154180736522142661, 3.13277066085658569817202219749, 3.22297936132339876477210583767, 3.82056319352285405482983521168, 4.26653256048889989246882328442, 5.07838740298404740682706793087, 5.32972968541709628887106147473, 5.34506079162002874048220604551, 5.80541278797801446915087566900, 6.21514010011937852838357450134, 7.18922747516542450082361005697, 7.34587201565838584997364620744, 7.52431935486464251488106197899, 7.69990400716311455162435486876, 8.395875628819618426841910050780, 8.756441586066739600777039885811, 9.279353336671326402025373360324