Properties

Label 4-2550e2-1.1-c1e2-0-1
Degree $4$
Conductor $6502500$
Sign $1$
Analytic cond. $414.605$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 9-s − 6·11-s + 16-s + 14·19-s − 12·29-s − 14·31-s + 36-s − 12·41-s + 6·44-s + 13·49-s − 20·61-s − 64-s − 12·71-s − 14·76-s − 34·79-s + 81-s + 24·89-s + 6·99-s − 30·101-s + 14·109-s + 12·116-s + 5·121-s + 14·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1/2·4-s − 1/3·9-s − 1.80·11-s + 1/4·16-s + 3.21·19-s − 2.22·29-s − 2.51·31-s + 1/6·36-s − 1.87·41-s + 0.904·44-s + 13/7·49-s − 2.56·61-s − 1/8·64-s − 1.42·71-s − 1.60·76-s − 3.82·79-s + 1/9·81-s + 2.54·89-s + 0.603·99-s − 2.98·101-s + 1.34·109-s + 1.11·116-s + 5/11·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6502500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(414.605\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6502500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2686113729\)
\(L(\frac12)\) \(\approx\) \(0.2686113729\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
17$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 17 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.279353336671326402025373360324, −8.756441586066739600777039885811, −8.395875628819618426841910050780, −7.69990400716311455162435486876, −7.52431935486464251488106197899, −7.34587201565838584997364620744, −7.18922747516542450082361005697, −6.21514010011937852838357450134, −5.80541278797801446915087566900, −5.34506079162002874048220604551, −5.32972968541709628887106147473, −5.07838740298404740682706793087, −4.26653256048889989246882328442, −3.82056319352285405482983521168, −3.22297936132339876477210583767, −3.13277066085658569817202219749, −2.51957767955154180736522142661, −1.72632459164441281525344687421, −1.33781476584183833567644085153, −0.17387535493892419288918454133, 0.17387535493892419288918454133, 1.33781476584183833567644085153, 1.72632459164441281525344687421, 2.51957767955154180736522142661, 3.13277066085658569817202219749, 3.22297936132339876477210583767, 3.82056319352285405482983521168, 4.26653256048889989246882328442, 5.07838740298404740682706793087, 5.32972968541709628887106147473, 5.34506079162002874048220604551, 5.80541278797801446915087566900, 6.21514010011937852838357450134, 7.18922747516542450082361005697, 7.34587201565838584997364620744, 7.52431935486464251488106197899, 7.69990400716311455162435486876, 8.395875628819618426841910050780, 8.756441586066739600777039885811, 9.279353336671326402025373360324

Graph of the $Z$-function along the critical line