L(s) = 1 | + i·2-s + i·3-s − 4-s − 6-s − 2i·7-s − i·8-s − 9-s − i·12-s + 2i·13-s + 2·14-s + 16-s + i·17-s − i·18-s + 4·19-s + 2·21-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 0.755i·7-s − 0.353i·8-s − 0.333·9-s − 0.288i·12-s + 0.554i·13-s + 0.534·14-s + 0.250·16-s + 0.242i·17-s − 0.235i·18-s + 0.917·19-s + 0.436·21-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
2550
= 2⋅3⋅52⋅17
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
20.3618 |
Root analytic conductor: |
4.51241 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2550(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2550, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.510477192 |
L(21) |
≈ |
1.510477192 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1−iT |
| 5 | 1 |
| 17 | 1−iT |
good | 7 | 1+2iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−2iT−13T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1+10T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+12iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−12T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1−6T+71T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1−10T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1−18T+89T2 |
| 97 | 1+14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.972896758696052883051112482108, −8.193278888294562177613671787076, −7.26876052801828573588868265475, −6.84540714943143656177757857363, −5.73925305197396526310405932956, −5.14965293789467323514001022207, −4.08138226033058356006880172201, −3.70871785708933881972579842798, −2.25220788030208594698013464688, −0.62674347670875099260631967967,
0.991680808067481084250114185412, 2.05629181597688770640909017754, 2.97257568923183612670383180011, 3.72978536930896817466808366790, 5.09749030201889466224237422497, 5.54119792924237596299815788548, 6.48479365108209866322355732707, 7.56872729140441273204203570227, 7.993753500361472324876948423776, 9.095932902205181179578372046337