Properties

Label 2-2e8-1.1-c3-0-8
Degree $2$
Conductor $256$
Sign $-1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·3-s + 73·9-s + 18·11-s + 90·17-s − 106·19-s − 125·25-s − 460·27-s − 180·33-s − 522·41-s + 290·43-s − 343·49-s − 900·51-s + 1.06e3·57-s − 846·59-s + 70·67-s + 430·73-s + 1.25e3·75-s + 2.62e3·81-s + 1.35e3·83-s − 1.02e3·89-s − 1.91e3·97-s + 1.31e3·99-s − 1.71e3·107-s − 270·113-s + ⋯
L(s)  = 1  − 1.92·3-s + 2.70·9-s + 0.493·11-s + 1.28·17-s − 1.27·19-s − 25-s − 3.27·27-s − 0.949·33-s − 1.98·41-s + 1.02·43-s − 49-s − 2.47·51-s + 2.46·57-s − 1.86·59-s + 0.127·67-s + 0.689·73-s + 1.92·75-s + 3.60·81-s + 1.78·83-s − 1.22·89-s − 1.99·97-s + 1.33·99-s − 1.54·107-s − 0.224·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 10 T + p^{3} T^{2} \)
5 \( 1 + p^{3} T^{2} \)
7 \( 1 + p^{3} T^{2} \)
11 \( 1 - 18 T + p^{3} T^{2} \)
13 \( 1 + p^{3} T^{2} \)
17 \( 1 - 90 T + p^{3} T^{2} \)
19 \( 1 + 106 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 + p^{3} T^{2} \)
37 \( 1 + p^{3} T^{2} \)
41 \( 1 + 522 T + p^{3} T^{2} \)
43 \( 1 - 290 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + 846 T + p^{3} T^{2} \)
61 \( 1 + p^{3} T^{2} \)
67 \( 1 - 70 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 - 430 T + p^{3} T^{2} \)
79 \( 1 + p^{3} T^{2} \)
83 \( 1 - 1350 T + p^{3} T^{2} \)
89 \( 1 + 1026 T + p^{3} T^{2} \)
97 \( 1 + 1910 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15037777711928462517360568670, −10.37931810579069264128929838950, −9.542368770972581575816419132631, −7.912456702358423037405338254607, −6.74204917406960803438714721444, −5.99956328171586295315270547567, −5.04685515117283460756782841614, −3.92952753794774786461886072090, −1.47892469641058410408637517631, 0, 1.47892469641058410408637517631, 3.92952753794774786461886072090, 5.04685515117283460756782841614, 5.99956328171586295315270547567, 6.74204917406960803438714721444, 7.912456702358423037405338254607, 9.542368770972581575816419132631, 10.37931810579069264128929838950, 11.15037777711928462517360568670

Graph of the $Z$-function along the critical line