Properties

Label 2-2e8-1.1-c3-0-4
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 27·9-s + 92·13-s + 94·17-s − 109·25-s + 284·29-s + 396·37-s + 230·41-s + 108·45-s − 343·49-s + 572·53-s − 468·61-s − 368·65-s + 1.09e3·73-s + 729·81-s − 376·85-s − 1.67e3·89-s − 594·97-s − 1.94e3·101-s − 1.46e3·109-s + 2.00e3·113-s − 2.48e3·117-s + ⋯
L(s)  = 1  − 0.357·5-s − 9-s + 1.96·13-s + 1.34·17-s − 0.871·25-s + 1.81·29-s + 1.75·37-s + 0.876·41-s + 0.357·45-s − 49-s + 1.48·53-s − 0.982·61-s − 0.702·65-s + 1.76·73-s + 81-s − 0.479·85-s − 1.98·89-s − 0.621·97-s − 1.91·101-s − 1.28·109-s + 1.66·113-s − 1.96·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.705981414\)
\(L(\frac12)\) \(\approx\) \(1.705981414\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + p^{3} T^{2} \)
5 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 - 92 T + p^{3} T^{2} \)
17 \( 1 - 94 T + p^{3} T^{2} \)
19 \( 1 + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 284 T + p^{3} T^{2} \)
31 \( 1 + p^{3} T^{2} \)
37 \( 1 - 396 T + p^{3} T^{2} \)
41 \( 1 - 230 T + p^{3} T^{2} \)
43 \( 1 + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 - 572 T + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 468 T + p^{3} T^{2} \)
67 \( 1 + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 - 1098 T + p^{3} T^{2} \)
79 \( 1 + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + 1670 T + p^{3} T^{2} \)
97 \( 1 + 594 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.50745062235760894294318826877, −10.81052646260543247340368767454, −9.634851170993791615834849113203, −8.465421100951715957398218219550, −7.923524068093471190730929634931, −6.36801398443267256293315837039, −5.60618889657209613155951139928, −4.04338334463341904273363934787, −2.95402768389815526455087509694, −0.991506038462113219667934455238, 0.991506038462113219667934455238, 2.95402768389815526455087509694, 4.04338334463341904273363934787, 5.60618889657209613155951139928, 6.36801398443267256293315837039, 7.923524068093471190730929634931, 8.465421100951715957398218219550, 9.634851170993791615834849113203, 10.81052646260543247340368767454, 11.50745062235760894294318826877

Graph of the $Z$-function along the critical line