L(s) = 1 | + 8i·3-s − 10i·5-s + 16·7-s − 37·9-s + 40i·11-s + 50i·13-s + 80·15-s − 30·17-s + 40i·19-s + 128i·21-s + 48·23-s + 25·25-s − 80i·27-s + 34i·29-s − 320·31-s + ⋯ |
L(s) = 1 | + 1.53i·3-s − 0.894i·5-s + 0.863·7-s − 1.37·9-s + 1.09i·11-s + 1.06i·13-s + 1.37·15-s − 0.428·17-s + 0.482i·19-s + 1.33i·21-s + 0.435·23-s + 0.200·25-s − 0.570i·27-s + 0.217i·29-s − 1.85·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.597575222\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.597575222\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 8iT - 27T^{2} \) |
| 5 | \( 1 + 10iT - 125T^{2} \) |
| 7 | \( 1 - 16T + 343T^{2} \) |
| 11 | \( 1 - 40iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 50iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 30T + 4.91e3T^{2} \) |
| 19 | \( 1 - 40iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 48T + 1.21e4T^{2} \) |
| 29 | \( 1 - 34iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 320T + 2.97e4T^{2} \) |
| 37 | \( 1 - 310iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 410T + 6.89e4T^{2} \) |
| 43 | \( 1 + 152iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 416T + 1.03e5T^{2} \) |
| 53 | \( 1 + 410iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 200iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 30iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 776iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 400T + 3.57e5T^{2} \) |
| 73 | \( 1 - 630T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.12e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 552iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 326T + 7.04e5T^{2} \) |
| 97 | \( 1 + 110T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74270911886240281870207657876, −10.90066341406279168920037281994, −9.922421216994580345763145502540, −9.132834781360296760594847863853, −8.443703117772995318659693451716, −7.00336017404331775659543717528, −5.22832895826117415389890931193, −4.72413864921906530323589817852, −3.82277485796557956693962682318, −1.79119022451592537989005078492,
0.63301741996652784432489114438, 2.10056678164313028491213512821, 3.28816367749648520267647967832, 5.33395294850062952231818612913, 6.35509400858744123006377628469, 7.30140909751366380493270886787, 7.987788004469972135605515317038, 8.967081238669298308113551414543, 10.82786542846412693262239802028, 11.07188218745043156842696488615