L(s) = 1 | + 8i·3-s − 10i·5-s + 16·7-s − 37·9-s + 40i·11-s + 50i·13-s + 80·15-s − 30·17-s + 40i·19-s + 128i·21-s + 48·23-s + 25·25-s − 80i·27-s + 34i·29-s − 320·31-s + ⋯ |
L(s) = 1 | + 1.53i·3-s − 0.894i·5-s + 0.863·7-s − 1.37·9-s + 1.09i·11-s + 1.06i·13-s + 1.37·15-s − 0.428·17-s + 0.482i·19-s + 1.33i·21-s + 0.435·23-s + 0.200·25-s − 0.570i·27-s + 0.217i·29-s − 1.85·31-s + ⋯ |
Λ(s)=(=(256s/2ΓC(s)L(s)(−0.707−0.707i)Λ(4−s)
Λ(s)=(=(256s/2ΓC(s+3/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
256
= 28
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
15.1044 |
Root analytic conductor: |
3.88644 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ256(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 256, ( :3/2), −0.707−0.707i)
|
Particular Values
L(2) |
≈ |
1.597575222 |
L(21) |
≈ |
1.597575222 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−8iT−27T2 |
| 5 | 1+10iT−125T2 |
| 7 | 1−16T+343T2 |
| 11 | 1−40iT−1.33e3T2 |
| 13 | 1−50iT−2.19e3T2 |
| 17 | 1+30T+4.91e3T2 |
| 19 | 1−40iT−6.85e3T2 |
| 23 | 1−48T+1.21e4T2 |
| 29 | 1−34iT−2.43e4T2 |
| 31 | 1+320T+2.97e4T2 |
| 37 | 1−310iT−5.06e4T2 |
| 41 | 1+410T+6.89e4T2 |
| 43 | 1+152iT−7.95e4T2 |
| 47 | 1−416T+1.03e5T2 |
| 53 | 1+410iT−1.48e5T2 |
| 59 | 1−200iT−2.05e5T2 |
| 61 | 1+30iT−2.26e5T2 |
| 67 | 1−776iT−3.00e5T2 |
| 71 | 1−400T+3.57e5T2 |
| 73 | 1−630T+3.89e5T2 |
| 79 | 1−1.12e3T+4.93e5T2 |
| 83 | 1−552iT−5.71e5T2 |
| 89 | 1−326T+7.04e5T2 |
| 97 | 1+110T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74270911886240281870207657876, −10.90066341406279168920037281994, −9.922421216994580345763145502540, −9.132834781360296760594847863853, −8.443703117772995318659693451716, −7.00336017404331775659543717528, −5.22832895826117415389890931193, −4.72413864921906530323589817852, −3.82277485796557956693962682318, −1.79119022451592537989005078492,
0.63301741996652784432489114438, 2.10056678164313028491213512821, 3.28816367749648520267647967832, 5.33395294850062952231818612913, 6.35509400858744123006377628469, 7.30140909751366380493270886787, 7.987788004469972135605515317038, 8.967081238669298308113551414543, 10.82786542846412693262239802028, 11.07188218745043156842696488615