L(s) = 1 | + 912·7-s − 2.68e3·9-s − 2.23e4·17-s − 1.63e5·23-s + 1.49e5·25-s − 8.09e4·31-s − 2.82e5·41-s − 1.36e6·47-s − 1.02e6·49-s − 2.44e6·63-s + 5.09e6·71-s + 3.36e6·73-s + 8.07e6·79-s + 2.41e6·81-s + 1.29e7·89-s − 1.21e7·97-s − 8.20e6·103-s + 1.86e7·113-s − 2.03e7·119-s + 3.26e7·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 5.98e7·153-s + ⋯ |
L(s) = 1 | + 1.00·7-s − 1.22·9-s − 1.10·17-s − 2.80·23-s + 1.91·25-s − 0.488·31-s − 0.640·41-s − 1.91·47-s − 1.24·49-s − 1.23·63-s + 1.68·71-s + 1.01·73-s + 1.84·79-s + 0.503·81-s + 1.94·89-s − 1.34·97-s − 0.739·103-s + 1.21·113-s − 1.10·119-s + 1.67·121-s + 1.35·153-s − 2.81·161-s + ⋯ |
Λ(s)=(=(65536s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(65536s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
65536
= 216
|
Sign: |
1
|
Analytic conductor: |
6395.29 |
Root analytic conductor: |
8.94262 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 65536, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
0.4490013966 |
L(21) |
≈ |
0.4490013966 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
good | 3 | C22 | 1+298p2T2+p14T4 |
| 5 | C22 | 1−149526T2+p14T4 |
| 7 | C2 | (1−456T+p7T2)2 |
| 11 | C22 | 1−32603766T2+p14T4 |
| 13 | C22 | 1−9331750T2+p14T4 |
| 17 | C2 | (1+11150T+p7T2)2 |
| 19 | C22 | 1−1770736102T2+p14T4 |
| 23 | C2 | (1+81704T+p7T2)2 |
| 29 | C22 | 1−24540111814T2+p14T4 |
| 31 | C2 | (1+40480T+p7T2)2 |
| 37 | C22 | 1−13932162902T2+p14T4 |
| 41 | C2 | (1+141402T+p7T2)2 |
| 43 | C22 | 1−66946399030T2+p14T4 |
| 47 | C2 | (1+682032T+p7T2)2 |
| 53 | C22 | 1+937974602250T2+p14T4 |
| 59 | C22 | 1−4044092872854T2+p14T4 |
| 61 | C22 | 1−2722187643142T2+p14T4 |
| 67 | C22 | 1−3325050217222T2+p14T4 |
| 71 | C2 | (1−2548232T+p7T2)2 |
| 73 | C2 | (1−1680326T+p7T2)2 |
| 79 | C2 | (1−4038064T+p7T2)2 |
| 83 | C22 | 1−25265648115558T2+p14T4 |
| 89 | C2 | (1−6473046T+p7T2)2 |
| 97 | C2 | (1+6065758T+p7T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14925570086343818736714994976, −10.72532125753540279067780307607, −10.04218243679370980611432845593, −9.577656471168676227115989819965, −9.004117622771594297649082735016, −8.453648364449749936029808142988, −8.105087292105323844963876075342, −7.921895020352833980086120407616, −6.98445456768812272635542563173, −6.40310702394613329366114798368, −6.17195982811732043725960572218, −5.24091705598414179955281739247, −5.01206895375848133957518027066, −4.40262392439682416425100183962, −3.64416350855205688470013100548, −3.12577401834294823773825107298, −2.12233151472190567563808185408, −2.05363110490017659800337975830, −1.09218341792945546554962518828, −0.16054144682128735812978866171,
0.16054144682128735812978866171, 1.09218341792945546554962518828, 2.05363110490017659800337975830, 2.12233151472190567563808185408, 3.12577401834294823773825107298, 3.64416350855205688470013100548, 4.40262392439682416425100183962, 5.01206895375848133957518027066, 5.24091705598414179955281739247, 6.17195982811732043725960572218, 6.40310702394613329366114798368, 6.98445456768812272635542563173, 7.921895020352833980086120407616, 8.105087292105323844963876075342, 8.453648364449749936029808142988, 9.004117622771594297649082735016, 9.577656471168676227115989819965, 10.04218243679370980611432845593, 10.72532125753540279067780307607, 11.14925570086343818736714994976