Properties

Label 2-2592-9.7-c1-0-29
Degree $2$
Conductor $2592$
Sign $0.766 + 0.642i$
Analytic cond. $20.6972$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + 1.73i)5-s + (−3 − 5.19i)13-s + 2·17-s + (0.500 − 0.866i)25-s + (5 − 8.66i)29-s − 2·37-s + (−5 − 8.66i)41-s + (3.5 + 6.06i)49-s + 14·53-s + (5 − 8.66i)61-s + (6 − 10.3i)65-s − 6·73-s + (2 + 3.46i)85-s + 10·89-s + (−9 + 15.5i)97-s + ⋯
L(s)  = 1  + (0.447 + 0.774i)5-s + (−0.832 − 1.44i)13-s + 0.485·17-s + (0.100 − 0.173i)25-s + (0.928 − 1.60i)29-s − 0.328·37-s + (−0.780 − 1.35i)41-s + (0.5 + 0.866i)49-s + 1.92·53-s + (0.640 − 1.10i)61-s + (0.744 − 1.28i)65-s − 0.702·73-s + (0.216 + 0.375i)85-s + 1.05·89-s + (−0.913 + 1.58i)97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $0.766 + 0.642i$
Analytic conductor: \(20.6972\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2592} (865, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2592,\ (\ :1/2),\ 0.766 + 0.642i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.748038369\)
\(L(\frac12)\) \(\approx\) \(1.748038369\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (3 + 5.19i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-5 + 8.66i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + (5 + 8.66i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 - 14T + 53T^{2} \)
59 \( 1 + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + (9 - 15.5i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.744459646820643702449843284656, −7.941724966536288114315934022714, −7.31353685290245761884017379474, −6.47896843890878725352938298492, −5.71103980586354661400137151270, −5.02106346293686316784573436189, −3.87641358932578115040214780271, −2.88575589535561264730649272834, −2.26182886860895408517592546414, −0.63251589691096042975129502053, 1.16144321176864410002697463006, 2.09528771784926336716786789950, 3.24902404234064968970224200129, 4.39220499847601658592016426977, 5.00184198945169374115743981709, 5.74753818253531788409337612762, 6.83690249519887679754324698026, 7.24573841553135259337695054122, 8.520443249114953747784839538589, 8.834070438261762304652540793764

Graph of the $Z$-function along the critical line