L(s) = 1 | + (1 + 1.73i)5-s + (−3 − 5.19i)13-s + 2·17-s + (0.500 − 0.866i)25-s + (5 − 8.66i)29-s − 2·37-s + (−5 − 8.66i)41-s + (3.5 + 6.06i)49-s + 14·53-s + (5 − 8.66i)61-s + (6 − 10.3i)65-s − 6·73-s + (2 + 3.46i)85-s + 10·89-s + (−9 + 15.5i)97-s + ⋯ |
L(s) = 1 | + (0.447 + 0.774i)5-s + (−0.832 − 1.44i)13-s + 0.485·17-s + (0.100 − 0.173i)25-s + (0.928 − 1.60i)29-s − 0.328·37-s + (−0.780 − 1.35i)41-s + (0.5 + 0.866i)49-s + 1.92·53-s + (0.640 − 1.10i)61-s + (0.744 − 1.28i)65-s − 0.702·73-s + (0.216 + 0.375i)85-s + 1.05·89-s + (−0.913 + 1.58i)97-s + ⋯ |
Λ(s)=(=(2592s/2ΓC(s)L(s)(0.766+0.642i)Λ(2−s)
Λ(s)=(=(2592s/2ΓC(s+1/2)L(s)(0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
2592
= 25⋅34
|
Sign: |
0.766+0.642i
|
Analytic conductor: |
20.6972 |
Root analytic conductor: |
4.54942 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2592(865,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2592, ( :1/2), 0.766+0.642i)
|
Particular Values
L(1) |
≈ |
1.748038369 |
L(21) |
≈ |
1.748038369 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−1−1.73i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−3.5−6.06i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 13 | 1+(3+5.19i)T+(−6.5+11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(−5+8.66i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−15.5+26.8i)T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(5+8.66i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−21.5−37.2i)T2 |
| 47 | 1+(−23.5−40.7i)T2 |
| 53 | 1−14T+53T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(−5+8.66i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−33.5+58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+(−39.5−68.4i)T2 |
| 83 | 1+(−41.5−71.8i)T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+(9−15.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.744459646820643702449843284656, −7.941724966536288114315934022714, −7.31353685290245761884017379474, −6.47896843890878725352938298492, −5.71103980586354661400137151270, −5.02106346293686316784573436189, −3.87641358932578115040214780271, −2.88575589535561264730649272834, −2.26182886860895408517592546414, −0.63251589691096042975129502053,
1.16144321176864410002697463006, 2.09528771784926336716786789950, 3.24902404234064968970224200129, 4.39220499847601658592016426977, 5.00184198945169374115743981709, 5.74753818253531788409337612762, 6.83690249519887679754324698026, 7.24573841553135259337695054122, 8.520443249114953747784839538589, 8.834070438261762304652540793764