L(s) = 1 | + (1 + 1.73i)5-s + (−3 − 5.19i)13-s + 2·17-s + (0.500 − 0.866i)25-s + (5 − 8.66i)29-s − 2·37-s + (−5 − 8.66i)41-s + (3.5 + 6.06i)49-s + 14·53-s + (5 − 8.66i)61-s + (6 − 10.3i)65-s − 6·73-s + (2 + 3.46i)85-s + 10·89-s + (−9 + 15.5i)97-s + ⋯ |
L(s) = 1 | + (0.447 + 0.774i)5-s + (−0.832 − 1.44i)13-s + 0.485·17-s + (0.100 − 0.173i)25-s + (0.928 − 1.60i)29-s − 0.328·37-s + (−0.780 − 1.35i)41-s + (0.5 + 0.866i)49-s + 1.92·53-s + (0.640 − 1.10i)61-s + (0.744 − 1.28i)65-s − 0.702·73-s + (0.216 + 0.375i)85-s + 1.05·89-s + (−0.913 + 1.58i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.748038369\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.748038369\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3 + 5.19i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5 + 8.66i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (5 + 8.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 14T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + (9 - 15.5i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.744459646820643702449843284656, −7.941724966536288114315934022714, −7.31353685290245761884017379474, −6.47896843890878725352938298492, −5.71103980586354661400137151270, −5.02106346293686316784573436189, −3.87641358932578115040214780271, −2.88575589535561264730649272834, −2.26182886860895408517592546414, −0.63251589691096042975129502053,
1.16144321176864410002697463006, 2.09528771784926336716786789950, 3.24902404234064968970224200129, 4.39220499847601658592016426977, 5.00184198945169374115743981709, 5.74753818253531788409337612762, 6.83690249519887679754324698026, 7.24573841553135259337695054122, 8.520443249114953747784839538589, 8.834070438261762304652540793764