L(s) = 1 | + (1 + i)2-s + 2i·4-s + (−3 − 3i)5-s + (2 − 2i)7-s + (−2 + 2i)8-s − 9·9-s − 6i·10-s + (6 − 6i)11-s + 13i·13-s + 4·14-s − 4·16-s + 6i·17-s + (−9 − 9i)18-s + (26 + 26i)19-s + (6 − 6i)20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (−0.600 − 0.600i)5-s + (0.285 − 0.285i)7-s + (−0.250 + 0.250i)8-s − 9-s − 0.600i·10-s + (0.545 − 0.545i)11-s + i·13-s + 0.285·14-s − 0.250·16-s + 0.352i·17-s + (−0.5 − 0.5i)18-s + (1.36 + 1.36i)19-s + (0.300 − 0.300i)20-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(0.881−0.471i)Λ(3−s)
Λ(s)=(=(26s/2ΓC(s+1)L(s)(0.881−0.471i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
0.881−0.471i
|
Analytic conductor: |
0.708448 |
Root analytic conductor: |
0.841693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(21,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :1), 0.881−0.471i)
|
Particular Values
L(23) |
≈ |
1.05219+0.263852i |
L(21) |
≈ |
1.05219+0.263852i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 13 | 1−13iT |
good | 3 | 1+9T2 |
| 5 | 1+(3+3i)T+25iT2 |
| 7 | 1+(−2+2i)T−49iT2 |
| 11 | 1+(−6+6i)T−121iT2 |
| 17 | 1−6iT−289T2 |
| 19 | 1+(−26−26i)T+361iT2 |
| 23 | 1+24iT−529T2 |
| 29 | 1+48T+841T2 |
| 31 | 1+(14+14i)T+961iT2 |
| 37 | 1+(−37+37i)T−1.36e3iT2 |
| 41 | 1+(9+9i)T+1.68e3iT2 |
| 43 | 1−36iT−1.84e3T2 |
| 47 | 1+(−42+42i)T−2.20e3iT2 |
| 53 | 1−30T+2.80e3T2 |
| 59 | 1+(54−54i)T−3.48e3iT2 |
| 61 | 1+18T+3.72e3T2 |
| 67 | 1+(22+22i)T+4.48e3iT2 |
| 71 | 1+(−6−6i)T+5.04e3iT2 |
| 73 | 1+(−17+17i)T−5.32e3iT2 |
| 79 | 1+108T+6.24e3T2 |
| 83 | 1+(−78−78i)T+6.88e3iT2 |
| 89 | 1+(9−9i)T−7.92e3iT2 |
| 97 | 1+(47+47i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.75075000834519460076311928876, −16.44712681731140219534814499481, −14.70294232960147805991572306730, −13.90300393988905715008427178251, −12.27189113398734597220008821566, −11.30287356242241452065891629106, −9.001743277187219891262692603270, −7.74904870654413418110336879363, −5.84602179849635622379922007877, −4.00527522059654166627719770843,
3.18651302706180249264320587061, 5.38569459593678042418592606655, 7.41588762584680208753980303552, 9.331167023136773648796773316813, 11.12671721156407251343402286710, 11.80008865402941539056754557416, 13.41921440535433854909104938686, 14.72775324191117174237516499556, 15.50405230739533236134390730981, 17.35449125857574115996580014573