L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s + (−0.133 + 2.23i)5-s + (1.99 − 2i)8-s + (2.59 − 1.5i)9-s + (0.633 + 3.09i)10-s + (−3.23 + 1.59i)13-s + (1.99 − 3.46i)16-s + (−0.133 − 0.0358i)17-s + (3 − 3i)18-s + (2 + 3.99i)20-s + (−4.96 − 0.598i)25-s + (−3.83 + 3.36i)26-s + (−9.23 − 5.33i)29-s + (1.46 − 5.46i)32-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.5i)4-s + (−0.0599 + 0.998i)5-s + (0.707 − 0.707i)8-s + (0.866 − 0.5i)9-s + (0.200 + 0.979i)10-s + (−0.896 + 0.443i)13-s + (0.499 − 0.866i)16-s + (−0.0324 − 0.00870i)17-s + (0.707 − 0.707i)18-s + (0.447 + 0.894i)20-s + (−0.992 − 0.119i)25-s + (−0.751 + 0.660i)26-s + (−1.71 − 0.989i)29-s + (0.258 − 0.965i)32-s + ⋯ |
Λ(s)=(=(260s/2ΓC(s)L(s)(0.990+0.141i)Λ(2−s)
Λ(s)=(=(260s/2ΓC(s+1/2)L(s)(0.990+0.141i)Λ(1−s)
Degree: |
2 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
0.990+0.141i
|
Analytic conductor: |
2.07611 |
Root analytic conductor: |
1.44087 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 260, ( :1/2), 0.990+0.141i)
|
Particular Values
L(1) |
≈ |
2.19611−0.155642i |
L(21) |
≈ |
2.19611−0.155642i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36+0.366i)T |
| 5 | 1+(0.133−2.23i)T |
| 13 | 1+(3.23−1.59i)T |
good | 3 | 1+(−2.59+1.5i)T2 |
| 7 | 1+(6.06+3.5i)T2 |
| 11 | 1+(−5.5−9.52i)T2 |
| 17 | 1+(0.133+0.0358i)T+(14.7+8.5i)T2 |
| 19 | 1+(9.5−16.4i)T2 |
| 23 | 1+(−19.9+11.5i)T2 |
| 29 | 1+(9.23+5.33i)T+(14.5+25.1i)T2 |
| 31 | 1+31T2 |
| 37 | 1+(10.6−2.86i)T+(32.0−18.5i)T2 |
| 41 | 1+(−10.3−5.96i)T+(20.5+35.5i)T2 |
| 43 | 1+(37.2+21.5i)T2 |
| 47 | 1−47iT2 |
| 53 | 1+(−5.29−5.29i)T+53iT2 |
| 59 | 1+(29.5−51.0i)T2 |
| 61 | 1+(−1.33−2.30i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−58.0+33.5i)T2 |
| 71 | 1+(−35.5+61.4i)T2 |
| 73 | 1+(−1.16+1.16i)T−73iT2 |
| 79 | 1+79T2 |
| 83 | 1+83iT2 |
| 89 | 1+(−5+8.66i)T+(−44.5−77.0i)T2 |
| 97 | 1+(4.75−17.7i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98021849873678474732146875670, −11.22008427892027977458233359061, −10.21471240296305693964805836261, −9.509050851451376614445355339151, −7.55302108494919958138867422268, −6.91142190369548993287531999010, −5.89933104727720344581735926307, −4.49210578042835974567409388455, −3.46000644685835524707585614927, −2.08898932961594158668462306208,
1.95942638812661455191096502919, 3.76036702768594012231891319056, 4.86561018704451972422094923930, 5.56958272668486288646026675146, 7.11521259470731472799974629183, 7.79550374872632366999366220395, 9.040700637076031427621710515298, 10.25188009445651792846460030184, 11.28209905854596109124676965112, 12.54160495714783284555854044482