L(s) = 1 | + (−0.180 + 0.104i)3-s + (1.60 + 1.56i)5-s + (1.72 − 2.99i)7-s + (−1.47 + 2.56i)9-s + (0.625 − 0.360i)11-s + (3.18 + 1.69i)13-s + (−0.452 − 0.115i)15-s + (−3.10 − 1.79i)17-s + (6.51 + 3.76i)19-s + 0.721i·21-s + (2.05 − 1.18i)23-s + (0.125 + 4.99i)25-s − 1.24i·27-s + (−3.68 − 6.37i)29-s + 0.668i·31-s + ⋯ |
L(s) = 1 | + (−0.104 + 0.0602i)3-s + (0.715 + 0.698i)5-s + (0.653 − 1.13i)7-s + (−0.492 + 0.853i)9-s + (0.188 − 0.108i)11-s + (0.883 + 0.468i)13-s + (−0.116 − 0.0297i)15-s + (−0.754 − 0.435i)17-s + (1.49 + 0.862i)19-s + 0.157i·21-s + (0.428 − 0.247i)23-s + (0.0250 + 0.999i)25-s − 0.239i·27-s + (−0.683 − 1.18i)29-s + 0.120i·31-s + ⋯ |
Λ(s)=(=(260s/2ΓC(s)L(s)(0.956−0.292i)Λ(2−s)
Λ(s)=(=(260s/2ΓC(s+1/2)L(s)(0.956−0.292i)Λ(1−s)
Degree: |
2 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
0.956−0.292i
|
Analytic conductor: |
2.07611 |
Root analytic conductor: |
1.44087 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 260, ( :1/2), 0.956−0.292i)
|
Particular Values
L(1) |
≈ |
1.41441+0.211621i |
L(21) |
≈ |
1.41441+0.211621i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.60−1.56i)T |
| 13 | 1+(−3.18−1.69i)T |
good | 3 | 1+(0.180−0.104i)T+(1.5−2.59i)T2 |
| 7 | 1+(−1.72+2.99i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.625+0.360i)T+(5.5−9.52i)T2 |
| 17 | 1+(3.10+1.79i)T+(8.5+14.7i)T2 |
| 19 | 1+(−6.51−3.76i)T+(9.5+16.4i)T2 |
| 23 | 1+(−2.05+1.18i)T+(11.5−19.9i)T2 |
| 29 | 1+(3.68+6.37i)T+(−14.5+25.1i)T2 |
| 31 | 1−0.668iT−31T2 |
| 37 | 1+(3.36+5.82i)T+(−18.5+32.0i)T2 |
| 41 | 1+(6.32−3.65i)T+(20.5−35.5i)T2 |
| 43 | 1+(7.06+4.07i)T+(21.5+37.2i)T2 |
| 47 | 1+6.40T+47T2 |
| 53 | 1−11.7iT−53T2 |
| 59 | 1+(4.20+2.42i)T+(29.5+51.0i)T2 |
| 61 | 1+(−2.68+4.64i)T+(−30.5−52.8i)T2 |
| 67 | 1+(7.80+13.5i)T+(−33.5+58.0i)T2 |
| 71 | 1+(4.10+2.37i)T+(35.5+61.4i)T2 |
| 73 | 1−6.36T+73T2 |
| 79 | 1−5.20T+79T2 |
| 83 | 1+13.3T+83T2 |
| 89 | 1+(−4.20+2.42i)T+(44.5−77.0i)T2 |
| 97 | 1+(1.83−3.17i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.66333559236957199128557835438, −11.03196722298165007157851563574, −10.34069826486997929320441687886, −9.273710149678043273473434517198, −7.999217340061549933878430745229, −7.11646174144086377231267634257, −5.99424160715074085990629934944, −4.84011212626120241442203237095, −3.43870905634417617010528586958, −1.75683604869581378162560476597,
1.51819065312308178021858497700, 3.19164129382976587013653879256, 5.02328468854763650252714725260, 5.68635478371143725221821028120, 6.78859440677974890382921001345, 8.519502785247397476504067147677, 8.847702490945227986803086233370, 9.848422234464662102394945589102, 11.28673979965643109570922009825, 11.84051520525299707894034333150