L(s) = 1 | + (−0.707 + 0.707i)2-s + 1.41i·3-s − 1.00i·4-s + (−1.00 − 1.00i)6-s + (0.707 + 0.707i)8-s − 1.00·9-s + 1.41·12-s + (0.707 + 0.707i)13-s − 1.00·16-s + (0.707 − 0.707i)18-s + (−1.00 + 1.00i)24-s − 1.00·26-s + (1 + i)31-s + (0.707 − 0.707i)32-s + 1.00i·36-s + (1.41 + 1.41i)37-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + 1.41i·3-s − 1.00i·4-s + (−1.00 − 1.00i)6-s + (0.707 + 0.707i)8-s − 1.00·9-s + 1.41·12-s + (0.707 + 0.707i)13-s − 1.00·16-s + (0.707 − 0.707i)18-s + (−1.00 + 1.00i)24-s − 1.00·26-s + (1 + i)31-s + (0.707 − 0.707i)32-s + 1.00i·36-s + (1.41 + 1.41i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8081132552\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8081132552\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-1 - i)T + iT^{2} \) |
| 37 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 41 | \( 1 + (1 + i)T + iT^{2} \) |
| 43 | \( 1 + 1.41T + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + 1.41iT - T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 71 | \( 1 + (-1 - i)T + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 89 | \( 1 + (-1 + i)T - iT^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.448262207019616583257270026350, −8.598613375071391152181777365912, −8.280709581630863362818292809551, −7.03369391428662270162544984966, −6.41831010691959772226522336223, −5.49032136559016528369452092738, −4.75664999266650923306729299451, −4.08937309108936352855505259778, −2.98019964983552489992020744141, −1.47596825437470975825682453908,
0.72675668397357298059262486506, 1.70982776978356270762040202918, 2.61195268713037542096315013309, 3.50805086077880500059344551321, 4.63774077337972502339645265956, 5.98038522460447283886300405691, 6.55496829176566930425471346241, 7.50563789605418818848565299641, 7.943724724931747242559699836330, 8.552406769598775436876783791474