L(s) = 1 | + (−0.707 + 0.707i)2-s + 1.41i·3-s − 1.00i·4-s + (−1.00 − 1.00i)6-s + (0.707 + 0.707i)8-s − 1.00·9-s + 1.41·12-s + (0.707 + 0.707i)13-s − 1.00·16-s + (0.707 − 0.707i)18-s + (−1.00 + 1.00i)24-s − 1.00·26-s + (1 + i)31-s + (0.707 − 0.707i)32-s + 1.00i·36-s + (1.41 + 1.41i)37-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + 1.41i·3-s − 1.00i·4-s + (−1.00 − 1.00i)6-s + (0.707 + 0.707i)8-s − 1.00·9-s + 1.41·12-s + (0.707 + 0.707i)13-s − 1.00·16-s + (0.707 − 0.707i)18-s + (−1.00 + 1.00i)24-s − 1.00·26-s + (1 + i)31-s + (0.707 − 0.707i)32-s + 1.00i·36-s + (1.41 + 1.41i)37-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(−0.957−0.289i)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)(−0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
−0.957−0.289i
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(2101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), −0.957−0.289i)
|
Particular Values
L(21) |
≈ |
0.8081132552 |
L(21) |
≈ |
0.8081132552 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 5 | 1 |
| 13 | 1+(−0.707−0.707i)T |
good | 3 | 1−1.41iT−T2 |
| 7 | 1−iT2 |
| 11 | 1+iT2 |
| 17 | 1−T2 |
| 19 | 1−iT2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+(−1−i)T+iT2 |
| 37 | 1+(−1.41−1.41i)T+iT2 |
| 41 | 1+(1+i)T+iT2 |
| 43 | 1+1.41T+T2 |
| 47 | 1−iT2 |
| 53 | 1+1.41iT−T2 |
| 59 | 1+iT2 |
| 61 | 1−T2 |
| 67 | 1+(1.41−1.41i)T−iT2 |
| 71 | 1+(−1−i)T+iT2 |
| 73 | 1−iT2 |
| 79 | 1+T2 |
| 83 | 1+(1.41−1.41i)T−iT2 |
| 89 | 1+(−1+i)T−iT2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.448262207019616583257270026350, −8.598613375071391152181777365912, −8.280709581630863362818292809551, −7.03369391428662270162544984966, −6.41831010691959772226522336223, −5.49032136559016528369452092738, −4.75664999266650923306729299451, −4.08937309108936352855505259778, −2.98019964983552489992020744141, −1.47596825437470975825682453908,
0.72675668397357298059262486506, 1.70982776978356270762040202918, 2.61195268713037542096315013309, 3.50805086077880500059344551321, 4.63774077337972502339645265956, 5.98038522460447283886300405691, 6.55496829176566930425471346241, 7.50563789605418818848565299641, 7.943724724931747242559699836330, 8.552406769598775436876783791474