Properties

Label 2-2600-1.1-c1-0-56
Degree $2$
Conductor $2600$
Sign $-1$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.44·3-s − 2·7-s + 2.99·9-s − 4.44·11-s + 13-s − 6.89·17-s + 0.449·19-s − 4.89·21-s − 6.44·23-s + 4·29-s − 4.44·31-s − 10.8·33-s − 4.89·37-s + 2.44·39-s + 10.8·41-s − 11.3·43-s + 2·47-s − 3·49-s − 16.8·51-s − 1.10·53-s + 1.10·57-s + 9.34·59-s − 5.79·61-s − 5.99·63-s + 5.10·67-s − 15.7·69-s − 3.55·71-s + ⋯
L(s)  = 1  + 1.41·3-s − 0.755·7-s + 0.999·9-s − 1.34·11-s + 0.277·13-s − 1.67·17-s + 0.103·19-s − 1.06·21-s − 1.34·23-s + 0.742·29-s − 0.799·31-s − 1.89·33-s − 0.805·37-s + 0.392·39-s + 1.70·41-s − 1.73·43-s + 0.291·47-s − 0.428·49-s − 2.36·51-s − 0.151·53-s + 0.145·57-s + 1.21·59-s − 0.742·61-s − 0.755·63-s + 0.623·67-s − 1.90·69-s − 0.421·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 2.44T + 3T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 4.44T + 11T^{2} \)
17 \( 1 + 6.89T + 17T^{2} \)
19 \( 1 - 0.449T + 19T^{2} \)
23 \( 1 + 6.44T + 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + 4.44T + 31T^{2} \)
37 \( 1 + 4.89T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 + 1.10T + 53T^{2} \)
59 \( 1 - 9.34T + 59T^{2} \)
61 \( 1 + 5.79T + 61T^{2} \)
67 \( 1 - 5.10T + 67T^{2} \)
71 \( 1 + 3.55T + 71T^{2} \)
73 \( 1 - 14.6T + 73T^{2} \)
79 \( 1 - 4.89T + 79T^{2} \)
83 \( 1 + 2T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 7.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.390579709095279782253314366346, −8.016361451205750368657510633918, −7.08969235129423655510865365764, −6.34840803617623298887686004845, −5.32816859233799727954467697358, −4.26634528158627670201356391739, −3.47987180236557990998935249375, −2.62756458243053411118615905809, −2.00783520248972867229596459855, 0, 2.00783520248972867229596459855, 2.62756458243053411118615905809, 3.47987180236557990998935249375, 4.26634528158627670201356391739, 5.32816859233799727954467697358, 6.34840803617623298887686004845, 7.08969235129423655510865365764, 8.016361451205750368657510633918, 8.390579709095279782253314366346

Graph of the $Z$-function along the critical line