L(s) = 1 | + 2.44·3-s − 2·7-s + 2.99·9-s − 4.44·11-s + 13-s − 6.89·17-s + 0.449·19-s − 4.89·21-s − 6.44·23-s + 4·29-s − 4.44·31-s − 10.8·33-s − 4.89·37-s + 2.44·39-s + 10.8·41-s − 11.3·43-s + 2·47-s − 3·49-s − 16.8·51-s − 1.10·53-s + 1.10·57-s + 9.34·59-s − 5.79·61-s − 5.99·63-s + 5.10·67-s − 15.7·69-s − 3.55·71-s + ⋯ |
L(s) = 1 | + 1.41·3-s − 0.755·7-s + 0.999·9-s − 1.34·11-s + 0.277·13-s − 1.67·17-s + 0.103·19-s − 1.06·21-s − 1.34·23-s + 0.742·29-s − 0.799·31-s − 1.89·33-s − 0.805·37-s + 0.392·39-s + 1.70·41-s − 1.73·43-s + 0.291·47-s − 0.428·49-s − 2.36·51-s − 0.151·53-s + 0.145·57-s + 1.21·59-s − 0.742·61-s − 0.755·63-s + 0.623·67-s − 1.90·69-s − 0.421·71-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2600s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1−T |
good | 3 | 1−2.44T+3T2 |
| 7 | 1+2T+7T2 |
| 11 | 1+4.44T+11T2 |
| 17 | 1+6.89T+17T2 |
| 19 | 1−0.449T+19T2 |
| 23 | 1+6.44T+23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+4.44T+31T2 |
| 37 | 1+4.89T+37T2 |
| 41 | 1−10.8T+41T2 |
| 43 | 1+11.3T+43T2 |
| 47 | 1−2T+47T2 |
| 53 | 1+1.10T+53T2 |
| 59 | 1−9.34T+59T2 |
| 61 | 1+5.79T+61T2 |
| 67 | 1−5.10T+67T2 |
| 71 | 1+3.55T+71T2 |
| 73 | 1−14.6T+73T2 |
| 79 | 1−4.89T+79T2 |
| 83 | 1+2T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+7.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.390579709095279782253314366346, −8.016361451205750368657510633918, −7.08969235129423655510865365764, −6.34840803617623298887686004845, −5.32816859233799727954467697358, −4.26634528158627670201356391739, −3.47987180236557990998935249375, −2.62756458243053411118615905809, −2.00783520248972867229596459855, 0,
2.00783520248972867229596459855, 2.62756458243053411118615905809, 3.47987180236557990998935249375, 4.26634528158627670201356391739, 5.32816859233799727954467697358, 6.34840803617623298887686004845, 7.08969235129423655510865365764, 8.016361451205750368657510633918, 8.390579709095279782253314366346