L(s) = 1 | + 1.66i·2-s − 0.756·4-s + 5.20·7-s + 2.06i·8-s − 4.92i·11-s − 2.72·13-s + 8.64i·14-s − 4.94·16-s + 8.24i·17-s + 8.17·22-s − 5·25-s − 4.52i·26-s − 3.94·28-s − 5.38i·29-s − 4.07i·32-s + ⋯ |
L(s) = 1 | + 1.17i·2-s − 0.378·4-s + 1.96·7-s + 0.729i·8-s − 1.48i·11-s − 0.755·13-s + 2.31i·14-s − 1.23·16-s + 1.99i·17-s + 1.74·22-s − 25-s − 0.886i·26-s − 0.744·28-s − 0.999i·29-s − 0.720i·32-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
−i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.07484+1.07484i |
L(21) |
≈ |
1.07484+1.07484i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1+5.38iT |
good | 2 | 1−1.66iT−2T2 |
| 5 | 1+5T2 |
| 7 | 1−5.20T+7T2 |
| 11 | 1+4.92iT−11T2 |
| 13 | 1+2.72T+13T2 |
| 17 | 1−8.24iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1+23T2 |
| 31 | 1−31T2 |
| 37 | 1−37T2 |
| 41 | 1+10.7iT−41T2 |
| 43 | 1−43T2 |
| 47 | 1+1.71iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−61T2 |
| 67 | 1+10.6T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−73T2 |
| 79 | 1−79T2 |
| 83 | 1+83T2 |
| 89 | 1−5.03iT−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03652163979263385801882432372, −11.24822468560849133378808567378, −10.52289335232629618531489032354, −8.726773607157863540082459929124, −8.176521000502004765071255331715, −7.51309383531782208911058307717, −6.06170509694916636370863239081, −5.40524839820306090859703475933, −4.15989143815161087958658312826, −1.98572221001153328727913236702,
1.56883344954744370225912333409, 2.59583149722910636997990759134, 4.44485243912479532962472500168, 5.03589232272127142242340766968, 7.09906025136613125177566008306, 7.74572370966521745757064712326, 9.234066192340207170951113841802, 9.998474436792621228958608904959, 11.01758936567099582910865255609, 11.77960916034356913783494753256