Properties

Label 2-261-29.28-c1-0-4
Degree $2$
Conductor $261$
Sign $-i$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.66i·2-s − 0.756·4-s + 5.20·7-s + 2.06i·8-s − 4.92i·11-s − 2.72·13-s + 8.64i·14-s − 4.94·16-s + 8.24i·17-s + 8.17·22-s − 5·25-s − 4.52i·26-s − 3.94·28-s − 5.38i·29-s − 4.07i·32-s + ⋯
L(s)  = 1  + 1.17i·2-s − 0.378·4-s + 1.96·7-s + 0.729i·8-s − 1.48i·11-s − 0.755·13-s + 2.31i·14-s − 1.23·16-s + 1.99i·17-s + 1.74·22-s − 25-s − 0.886i·26-s − 0.744·28-s − 0.999i·29-s − 0.720i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $-i$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{261} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07484 + 1.07484i\)
\(L(\frac12)\) \(\approx\) \(1.07484 + 1.07484i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + 5.38iT \)
good2 \( 1 - 1.66iT - 2T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 5.20T + 7T^{2} \)
11 \( 1 + 4.92iT - 11T^{2} \)
13 \( 1 + 2.72T + 13T^{2} \)
17 \( 1 - 8.24iT - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 23T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 10.7iT - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 1.71iT - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 5.03iT - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03652163979263385801882432372, −11.24822468560849133378808567378, −10.52289335232629618531489032354, −8.726773607157863540082459929124, −8.176521000502004765071255331715, −7.51309383531782208911058307717, −6.06170509694916636370863239081, −5.40524839820306090859703475933, −4.15989143815161087958658312826, −1.98572221001153328727913236702, 1.56883344954744370225912333409, 2.59583149722910636997990759134, 4.44485243912479532962472500168, 5.03589232272127142242340766968, 7.09906025136613125177566008306, 7.74572370966521745757064712326, 9.234066192340207170951113841802, 9.998474436792621228958608904959, 11.01758936567099582910865255609, 11.77960916034356913783494753256

Graph of the $Z$-function along the critical line