L(s) = 1 | + (−0.487 − 2.13i)2-s + (−2.52 + 1.21i)4-s + (−0.533 − 2.33i)5-s + (−1.21 − 0.586i)7-s + (1.09 + 1.37i)8-s + (−4.73 + 2.27i)10-s + (−2.18 + 2.74i)11-s + (3.76 − 4.71i)13-s + (−0.659 + 2.88i)14-s + (−1.08 + 1.36i)16-s − 3.05·17-s + (−5.07 + 2.44i)19-s + (4.19 + 5.25i)20-s + (6.93 + 3.33i)22-s + (0.225 − 0.989i)23-s + ⋯ |
L(s) = 1 | + (−0.344 − 1.51i)2-s + (−1.26 + 0.608i)4-s + (−0.238 − 1.04i)5-s + (−0.460 − 0.221i)7-s + (0.388 + 0.487i)8-s + (−1.49 + 0.720i)10-s + (−0.659 + 0.827i)11-s + (1.04 − 1.30i)13-s + (−0.176 + 0.772i)14-s + (−0.272 + 0.341i)16-s − 0.740·17-s + (−1.16 + 0.560i)19-s + (0.936 + 1.17i)20-s + (1.47 + 0.711i)22-s + (0.0470 − 0.206i)23-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(−0.823−0.567i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(−0.823−0.567i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
−0.823−0.567i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), −0.823−0.567i)
|
Particular Values
L(1) |
≈ |
0.204025+0.655631i |
L(21) |
≈ |
0.204025+0.655631i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1+(−5.14+1.58i)T |
good | 2 | 1+(0.487+2.13i)T+(−1.80+0.867i)T2 |
| 5 | 1+(0.533+2.33i)T+(−4.50+2.16i)T2 |
| 7 | 1+(1.21+0.586i)T+(4.36+5.47i)T2 |
| 11 | 1+(2.18−2.74i)T+(−2.44−10.7i)T2 |
| 13 | 1+(−3.76+4.71i)T+(−2.89−12.6i)T2 |
| 17 | 1+3.05T+17T2 |
| 19 | 1+(5.07−2.44i)T+(11.8−14.8i)T2 |
| 23 | 1+(−0.225+0.989i)T+(−20.7−9.97i)T2 |
| 31 | 1+(1.80+7.90i)T+(−27.9+13.4i)T2 |
| 37 | 1+(−3.42−4.29i)T+(−8.23+36.0i)T2 |
| 41 | 1−6.85T+41T2 |
| 43 | 1+(−1.73+7.60i)T+(−38.7−18.6i)T2 |
| 47 | 1+(−0.260+0.327i)T+(−10.4−45.8i)T2 |
| 53 | 1+(2.96+13.0i)T+(−47.7+22.9i)T2 |
| 59 | 1+3.56T+59T2 |
| 61 | 1+(6.49+3.12i)T+(38.0+47.6i)T2 |
| 67 | 1+(−5.18−6.49i)T+(−14.9+65.3i)T2 |
| 71 | 1+(−6.10+7.65i)T+(−15.7−69.2i)T2 |
| 73 | 1+(−0.0675+0.296i)T+(−65.7−31.6i)T2 |
| 79 | 1+(−2.49−3.13i)T+(−17.5+77.0i)T2 |
| 83 | 1+(3.88−1.87i)T+(51.7−64.8i)T2 |
| 89 | 1+(−3.11−13.6i)T+(−80.1+38.6i)T2 |
| 97 | 1+(−3.42+1.65i)T+(60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30840069998167300142922145052, −10.48970229861578215250622079591, −9.790938052111306607200394963826, −8.697177135044304119193021388268, −8.022009376939604986837135717876, −6.26511036816862802344597871968, −4.72585411475066579448688819284, −3.72237277089883871014844102693, −2.26625880041429465588239323201, −0.59186325370686096861902988804,
2.88875036758917725897457938881, 4.50915895419157384735886641107, 6.12492686338618327567345530772, 6.50178194147856312521672950622, 7.46346147748417644286253891964, 8.625960503925346173997671281528, 9.172428157614426484313916251818, 10.74411259979381560157363027696, 11.24198238850565782632621706874, 12.80550597669134438787494239361