L(s) = 1 | + (−0.110 − 0.138i)2-s + (0.438 − 1.91i)4-s + (2.15 + 2.69i)5-s + (0.844 + 3.70i)7-s + (−0.633 + 0.304i)8-s + (0.135 − 0.595i)10-s + (−3.84 − 1.85i)11-s + (4.18 + 2.01i)13-s + (0.419 − 0.525i)14-s + (−3.43 − 1.65i)16-s + 3.07·17-s + (0.799 − 3.50i)19-s + (6.12 − 2.94i)20-s + (0.168 + 0.736i)22-s + (0.270 − 0.339i)23-s + ⋯ |
L(s) = 1 | + (−0.0780 − 0.0978i)2-s + (0.219 − 0.959i)4-s + (0.962 + 1.20i)5-s + (0.319 + 1.39i)7-s + (−0.223 + 0.107i)8-s + (0.0430 − 0.188i)10-s + (−1.15 − 0.558i)11-s + (1.16 + 0.558i)13-s + (0.111 − 0.140i)14-s + (−0.858 − 0.413i)16-s + 0.745·17-s + (0.183 − 0.803i)19-s + (1.36 − 0.659i)20-s + (0.0358 + 0.157i)22-s + (0.0563 − 0.0706i)23-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(0.963−0.267i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(0.963−0.267i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
0.963−0.267i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), 0.963−0.267i)
|
Particular Values
L(1) |
≈ |
1.44533+0.196562i |
L(21) |
≈ |
1.44533+0.196562i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1+(−1.41+5.19i)T |
good | 2 | 1+(0.110+0.138i)T+(−0.445+1.94i)T2 |
| 5 | 1+(−2.15−2.69i)T+(−1.11+4.87i)T2 |
| 7 | 1+(−0.844−3.70i)T+(−6.30+3.03i)T2 |
| 11 | 1+(3.84+1.85i)T+(6.85+8.60i)T2 |
| 13 | 1+(−4.18−2.01i)T+(8.10+10.1i)T2 |
| 17 | 1−3.07T+17T2 |
| 19 | 1+(−0.799+3.50i)T+(−17.1−8.24i)T2 |
| 23 | 1+(−0.270+0.339i)T+(−5.11−22.4i)T2 |
| 31 | 1+(2.81+3.53i)T+(−6.89+30.2i)T2 |
| 37 | 1+(5.70−2.74i)T+(23.0−28.9i)T2 |
| 41 | 1−1.97T+41T2 |
| 43 | 1+(0.156−0.196i)T+(−9.56−41.9i)T2 |
| 47 | 1+(4.33+2.08i)T+(29.3+36.7i)T2 |
| 53 | 1+(6.83+8.57i)T+(−11.7+51.6i)T2 |
| 59 | 1−6.06T+59T2 |
| 61 | 1+(0.843+3.69i)T+(−54.9+26.4i)T2 |
| 67 | 1+(−4.74+2.28i)T+(41.7−52.3i)T2 |
| 71 | 1+(5.25+2.53i)T+(44.2+55.5i)T2 |
| 73 | 1+(6.57−8.24i)T+(−16.2−71.1i)T2 |
| 79 | 1+(9.04−4.35i)T+(49.2−61.7i)T2 |
| 83 | 1+(1.57−6.92i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−8.71−10.9i)T+(−19.8+86.7i)T2 |
| 97 | 1+(−3.18+13.9i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60132910668065724127296640186, −11.06026335655543488123872417564, −10.18111139061576900955642575523, −9.362813434870077247038287621415, −8.294523923876114381922006250238, −6.71954446070904442155933916274, −5.89398536865674917273778821446, −5.30426225005972951697283723096, −2.93176896893100901980777196913, −2.00158413979407317273950138534,
1.45575751365569189982301071182, 3.40300949412256763896991595453, 4.68295842699002838279514513147, 5.76734204655947021558755475437, 7.26011920485863402095577490871, 8.023168323911245057196558657666, 8.884429650578294598686819185143, 10.14512838364414918480886754832, 10.79391878563521841195281360844, 12.24202746111963339147350100972