L(s) = 1 | − 2-s + 4-s + 4·5-s − 8-s − 4·10-s + 4·11-s − 3·13-s + 16-s − 7·17-s − 2·19-s + 4·20-s − 4·22-s + 23-s + 11·25-s + 3·26-s − 29-s + 9·31-s − 32-s + 7·34-s + 2·37-s + 2·38-s − 4·40-s + 6·41-s + 11·43-s + 4·44-s − 46-s − 6·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.353·8-s − 1.26·10-s + 1.20·11-s − 0.832·13-s + 1/4·16-s − 1.69·17-s − 0.458·19-s + 0.894·20-s − 0.852·22-s + 0.208·23-s + 11/5·25-s + 0.588·26-s − 0.185·29-s + 1.61·31-s − 0.176·32-s + 1.20·34-s + 0.328·37-s + 0.324·38-s − 0.632·40-s + 0.937·41-s + 1.67·43-s + 0.603·44-s − 0.147·46-s − 0.875·47-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.909344415 |
L(21) |
≈ |
1.909344415 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1−4T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+3T+pT2 |
| 17 | 1+7T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1+T+pT2 |
| 31 | 1−9T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−11T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1−9T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1−7T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+6T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+3T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.076386420504345035537011996118, −8.386834803015030063906818806717, −7.17230892063836621876590463825, −6.49244247951320148958731343293, −6.12230164783542580596662547870, −5.05352817881679124240654755585, −4.16226096911516495331985392522, −2.57898691887524846597709635063, −2.13967823750617304276182350687, −0.998858625839110032845229095752,
0.998858625839110032845229095752, 2.13967823750617304276182350687, 2.57898691887524846597709635063, 4.16226096911516495331985392522, 5.05352817881679124240654755585, 6.12230164783542580596662547870, 6.49244247951320148958731343293, 7.17230892063836621876590463825, 8.386834803015030063906818806717, 9.076386420504345035537011996118