Properties

Label 2-2646-1.1-c1-0-15
Degree $2$
Conductor $2646$
Sign $1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·5-s − 8-s − 4·10-s + 4·11-s − 3·13-s + 16-s − 7·17-s − 2·19-s + 4·20-s − 4·22-s + 23-s + 11·25-s + 3·26-s − 29-s + 9·31-s − 32-s + 7·34-s + 2·37-s + 2·38-s − 4·40-s + 6·41-s + 11·43-s + 4·44-s − 46-s − 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.353·8-s − 1.26·10-s + 1.20·11-s − 0.832·13-s + 1/4·16-s − 1.69·17-s − 0.458·19-s + 0.894·20-s − 0.852·22-s + 0.208·23-s + 11/5·25-s + 0.588·26-s − 0.185·29-s + 1.61·31-s − 0.176·32-s + 1.20·34-s + 0.328·37-s + 0.324·38-s − 0.632·40-s + 0.937·41-s + 1.67·43-s + 0.603·44-s − 0.147·46-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.909344415\)
\(L(\frac12)\) \(\approx\) \(1.909344415\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 5 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.076386420504345035537011996118, −8.386834803015030063906818806717, −7.17230892063836621876590463825, −6.49244247951320148958731343293, −6.12230164783542580596662547870, −5.05352817881679124240654755585, −4.16226096911516495331985392522, −2.57898691887524846597709635063, −2.13967823750617304276182350687, −0.998858625839110032845229095752, 0.998858625839110032845229095752, 2.13967823750617304276182350687, 2.57898691887524846597709635063, 4.16226096911516495331985392522, 5.05352817881679124240654755585, 6.12230164783542580596662547870, 6.49244247951320148958731343293, 7.17230892063836621876590463825, 8.386834803015030063906818806717, 9.076386420504345035537011996118

Graph of the $Z$-function along the critical line