L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.258 + 0.448i)5-s + 0.999·8-s − 0.517·10-s + (−0.732 + 1.26i)11-s + (1.22 + 2.12i)13-s + (−0.5 + 0.866i)16-s + 3.48·17-s + 0.517·19-s + (0.258 − 0.448i)20-s + (−0.732 − 1.26i)22-s + (3.96 + 6.86i)23-s + (2.36 − 4.09i)25-s − 2.44·26-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.115 + 0.200i)5-s + 0.353·8-s − 0.163·10-s + (−0.220 + 0.382i)11-s + (0.339 + 0.588i)13-s + (−0.125 + 0.216i)16-s + 0.845·17-s + 0.118·19-s + (0.0578 − 0.100i)20-s + (−0.156 − 0.270i)22-s + (0.826 + 1.43i)23-s + (0.473 − 0.819i)25-s − 0.480·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0871 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0871 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.429792326\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.429792326\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.258 - 0.448i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.732 - 1.26i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.22 - 2.12i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.48T + 17T^{2} \) |
| 19 | \( 1 - 0.517T + 19T^{2} \) |
| 23 | \( 1 + (-3.96 - 6.86i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.36 + 2.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.67 + 6.36i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 + (-2.82 - 4.89i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.09 + 10.5i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.31 - 4.00i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.73T + 53T^{2} \) |
| 59 | \( 1 + (-7.39 - 12.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.19 - 3.79i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.90 - 3.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 0.803T + 71T^{2} \) |
| 73 | \( 1 - 4.62T + 73T^{2} \) |
| 79 | \( 1 + (7.06 - 12.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.94 - 8.57i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 16.1T + 89T^{2} \) |
| 97 | \( 1 + (-0.517 + 0.896i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.063051486017162941692768949138, −8.247084356378315908000078934792, −7.43085083265047523026293199362, −6.96828448545587040373086792994, −5.97114680534973446552773085517, −5.39565484055828799043449480889, −4.41639973142503509726168742615, −3.48217886823819974524648944314, −2.27223498255518410176836390058, −1.08115516723396993399930218732,
0.63924779108701704838973630761, 1.69203459382976939253859355175, 3.00846790339865001767687219059, 3.47107837683834907808804272296, 4.79191853174913357865734027324, 5.35577343986985624906599490495, 6.41285684052566817730929944226, 7.27791376296272286945914777591, 8.101282947201177893458974135789, 8.758815387151240867752788965655