Properties

Label 2-2646-9.7-c1-0-10
Degree 22
Conductor 26462646
Sign 0.08710.996i-0.0871 - 0.996i
Analytic cond. 21.128421.1284
Root an. cond. 4.596564.59656
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.258 + 0.448i)5-s + 0.999·8-s − 0.517·10-s + (−0.732 + 1.26i)11-s + (1.22 + 2.12i)13-s + (−0.5 + 0.866i)16-s + 3.48·17-s + 0.517·19-s + (0.258 − 0.448i)20-s + (−0.732 − 1.26i)22-s + (3.96 + 6.86i)23-s + (2.36 − 4.09i)25-s − 2.44·26-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.115 + 0.200i)5-s + 0.353·8-s − 0.163·10-s + (−0.220 + 0.382i)11-s + (0.339 + 0.588i)13-s + (−0.125 + 0.216i)16-s + 0.845·17-s + 0.118·19-s + (0.0578 − 0.100i)20-s + (−0.156 − 0.270i)22-s + (0.826 + 1.43i)23-s + (0.473 − 0.819i)25-s − 0.480·26-s + ⋯

Functional equation

Λ(s)=(2646s/2ΓC(s)L(s)=((0.08710.996i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0871 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(2646s/2ΓC(s+1/2)L(s)=((0.08710.996i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0871 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 26462646    =    233722 \cdot 3^{3} \cdot 7^{2}
Sign: 0.08710.996i-0.0871 - 0.996i
Analytic conductor: 21.128421.1284
Root analytic conductor: 4.596564.59656
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ2646(883,)\chi_{2646} (883, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2646, ( :1/2), 0.08710.996i)(2,\ 2646,\ (\ :1/2),\ -0.0871 - 0.996i)

Particular Values

L(1)L(1) \approx 1.4297923261.429792326
L(12)L(\frac12) \approx 1.4297923261.429792326
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
3 1 1
7 1 1
good5 1+(0.2580.448i)T+(2.5+4.33i)T2 1 + (-0.258 - 0.448i)T + (-2.5 + 4.33i)T^{2}
11 1+(0.7321.26i)T+(5.59.52i)T2 1 + (0.732 - 1.26i)T + (-5.5 - 9.52i)T^{2}
13 1+(1.222.12i)T+(6.5+11.2i)T2 1 + (-1.22 - 2.12i)T + (-6.5 + 11.2i)T^{2}
17 13.48T+17T2 1 - 3.48T + 17T^{2}
19 10.517T+19T2 1 - 0.517T + 19T^{2}
23 1+(3.966.86i)T+(11.5+19.9i)T2 1 + (-3.96 - 6.86i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.36+2.36i)T+(14.525.1i)T2 1 + (-1.36 + 2.36i)T + (-14.5 - 25.1i)T^{2}
31 1+(3.67+6.36i)T+(15.5+26.8i)T2 1 + (3.67 + 6.36i)T + (-15.5 + 26.8i)T^{2}
37 1+8T+37T2 1 + 8T + 37T^{2}
41 1+(2.824.89i)T+(20.5+35.5i)T2 1 + (-2.82 - 4.89i)T + (-20.5 + 35.5i)T^{2}
43 1+(6.09+10.5i)T+(21.537.2i)T2 1 + (-6.09 + 10.5i)T + (-21.5 - 37.2i)T^{2}
47 1+(2.314.00i)T+(23.540.7i)T2 1 + (2.31 - 4.00i)T + (-23.5 - 40.7i)T^{2}
53 1+6.73T+53T2 1 + 6.73T + 53T^{2}
59 1+(7.3912.8i)T+(29.5+51.0i)T2 1 + (-7.39 - 12.8i)T + (-29.5 + 51.0i)T^{2}
61 1+(2.193.79i)T+(30.552.8i)T2 1 + (2.19 - 3.79i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.903.29i)T+(33.5+58.0i)T2 1 + (-1.90 - 3.29i)T + (-33.5 + 58.0i)T^{2}
71 10.803T+71T2 1 - 0.803T + 71T^{2}
73 14.62T+73T2 1 - 4.62T + 73T^{2}
79 1+(7.0612.2i)T+(39.568.4i)T2 1 + (7.06 - 12.2i)T + (-39.5 - 68.4i)T^{2}
83 1+(4.948.57i)T+(41.571.8i)T2 1 + (4.94 - 8.57i)T + (-41.5 - 71.8i)T^{2}
89 116.1T+89T2 1 - 16.1T + 89T^{2}
97 1+(0.517+0.896i)T+(48.584.0i)T2 1 + (-0.517 + 0.896i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.063051486017162941692768949138, −8.247084356378315908000078934792, −7.43085083265047523026293199362, −6.96828448545587040373086792994, −5.97114680534973446552773085517, −5.39565484055828799043449480889, −4.41639973142503509726168742615, −3.48217886823819974524648944314, −2.27223498255518410176836390058, −1.08115516723396993399930218732, 0.63924779108701704838973630761, 1.69203459382976939253859355175, 3.00846790339865001767687219059, 3.47107837683834907808804272296, 4.79191853174913357865734027324, 5.35577343986985624906599490495, 6.41285684052566817730929944226, 7.27791376296272286945914777591, 8.101282947201177893458974135789, 8.758815387151240867752788965655

Graph of the ZZ-function along the critical line