L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.258 + 0.448i)5-s + 0.999·8-s − 0.517·10-s + (−0.732 + 1.26i)11-s + (1.22 + 2.12i)13-s + (−0.5 + 0.866i)16-s + 3.48·17-s + 0.517·19-s + (0.258 − 0.448i)20-s + (−0.732 − 1.26i)22-s + (3.96 + 6.86i)23-s + (2.36 − 4.09i)25-s − 2.44·26-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.115 + 0.200i)5-s + 0.353·8-s − 0.163·10-s + (−0.220 + 0.382i)11-s + (0.339 + 0.588i)13-s + (−0.125 + 0.216i)16-s + 0.845·17-s + 0.118·19-s + (0.0578 − 0.100i)20-s + (−0.156 − 0.270i)22-s + (0.826 + 1.43i)23-s + (0.473 − 0.819i)25-s − 0.480·26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(−0.0871−0.996i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(−0.0871−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
−0.0871−0.996i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), −0.0871−0.996i)
|
Particular Values
L(1) |
≈ |
1.429792326 |
L(21) |
≈ |
1.429792326 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−0.258−0.448i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.732−1.26i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−1.22−2.12i)T+(−6.5+11.2i)T2 |
| 17 | 1−3.48T+17T2 |
| 19 | 1−0.517T+19T2 |
| 23 | 1+(−3.96−6.86i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.36+2.36i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.67+6.36i)T+(−15.5+26.8i)T2 |
| 37 | 1+8T+37T2 |
| 41 | 1+(−2.82−4.89i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6.09+10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.31−4.00i)T+(−23.5−40.7i)T2 |
| 53 | 1+6.73T+53T2 |
| 59 | 1+(−7.39−12.8i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.19−3.79i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.90−3.29i)T+(−33.5+58.0i)T2 |
| 71 | 1−0.803T+71T2 |
| 73 | 1−4.62T+73T2 |
| 79 | 1+(7.06−12.2i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.94−8.57i)T+(−41.5−71.8i)T2 |
| 89 | 1−16.1T+89T2 |
| 97 | 1+(−0.517+0.896i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.063051486017162941692768949138, −8.247084356378315908000078934792, −7.43085083265047523026293199362, −6.96828448545587040373086792994, −5.97114680534973446552773085517, −5.39565484055828799043449480889, −4.41639973142503509726168742615, −3.48217886823819974524648944314, −2.27223498255518410176836390058, −1.08115516723396993399930218732,
0.63924779108701704838973630761, 1.69203459382976939253859355175, 3.00846790339865001767687219059, 3.47107837683834907808804272296, 4.79191853174913357865734027324, 5.35577343986985624906599490495, 6.41285684052566817730929944226, 7.27791376296272286945914777591, 8.101282947201177893458974135789, 8.758815387151240867752788965655