L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s − 0.517·5-s + 0.999·8-s + (0.258 + 0.448i)10-s + 1.46·11-s + (1.22 + 2.12i)13-s + (−0.5 − 0.866i)16-s + (−1.74 − 3.01i)17-s + (−0.258 + 0.448i)19-s + (0.258 − 0.448i)20-s + (−0.732 − 1.26i)22-s − 7.92·23-s − 4.73·25-s + (1.22 − 2.12i)26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s − 0.231·5-s + 0.353·8-s + (0.0818 + 0.141i)10-s + 0.441·11-s + (0.339 + 0.588i)13-s + (−0.125 − 0.216i)16-s + (−0.422 − 0.731i)17-s + (−0.0593 + 0.102i)19-s + (0.0578 − 0.100i)20-s + (−0.156 − 0.270i)22-s − 1.65·23-s − 0.946·25-s + (0.240 − 0.416i)26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(−0.959+0.282i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(−0.959+0.282i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
−0.959+0.282i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), −0.959+0.282i)
|
Particular Values
L(1) |
≈ |
0.5613371260 |
L(21) |
≈ |
0.5613371260 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+0.517T+5T2 |
| 11 | 1−1.46T+11T2 |
| 13 | 1+(−1.22−2.12i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.74+3.01i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.258−0.448i)T+(−9.5−16.4i)T2 |
| 23 | 1+7.92T+23T2 |
| 29 | 1+(−1.36+2.36i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.67−6.36i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4+6.92i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.82−4.89i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6.09+10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.31+4.00i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3.36−5.83i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−7.39+12.8i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.19+3.79i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.90+3.29i)T+(−33.5−58.0i)T2 |
| 71 | 1−0.803T+71T2 |
| 73 | 1+(2.31+4.00i)T+(−36.5+63.2i)T2 |
| 79 | 1+(7.06+12.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+(4.94−8.57i)T+(−41.5−71.8i)T2 |
| 89 | 1+(8.05−13.9i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−0.517+0.896i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.619854584453875773669288528656, −7.888846597774580173378807350242, −7.11654391170977658116426238405, −6.27484518201592522622357314533, −5.35056130533735943602460255666, −4.16435752283130689181889593133, −3.80423722448343225007991847181, −2.51350481575236235270071782156, −1.66450807589180568164678662977, −0.21645570023597463384106240509,
1.27045115915773789580008092107, 2.49315691667108990187887717681, 3.87932181298461306180686263690, 4.35216390635075693218450542485, 5.71152087237810480092399416772, 6.03522775375318443505261177831, 6.96414849926735747411425547893, 7.86789812351547456763733570470, 8.239760211525327233311803555403, 9.107155217165369714781745772483