L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (−1.77 − 3.07i)5-s − 0.999i·8-s + 3.55i·10-s + (2.61 + 1.51i)11-s + (−0.888 + 0.513i)13-s + (−0.5 + 0.866i)16-s − 1.61·17-s − 8.22i·19-s + (1.77 − 3.07i)20-s + (−1.51 − 2.61i)22-s + (2.90 − 1.67i)23-s + (−3.80 + 6.59i)25-s + 1.02·26-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.794 − 1.37i)5-s − 0.353i·8-s + 1.12i·10-s + (0.789 + 0.455i)11-s + (−0.246 + 0.142i)13-s + (−0.125 + 0.216i)16-s − 0.392·17-s − 1.88i·19-s + (0.397 − 0.687i)20-s + (−0.322 − 0.558i)22-s + (0.606 − 0.350i)23-s + (−0.761 + 1.31i)25-s + 0.201·26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(−0.999+0.00551i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(−0.999+0.00551i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
−0.999+0.00551i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(1763,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), −0.999+0.00551i)
|
Particular Values
L(1) |
≈ |
0.6872675926 |
L(21) |
≈ |
0.6872675926 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(1.77+3.07i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−2.61−1.51i)T+(5.5+9.52i)T2 |
| 13 | 1+(0.888−0.513i)T+(6.5−11.2i)T2 |
| 17 | 1+1.61T+17T2 |
| 19 | 1+8.22iT−19T2 |
| 23 | 1+(−2.90+1.67i)T+(11.5−19.9i)T2 |
| 29 | 1+(−3.70−2.13i)T+(14.5+25.1i)T2 |
| 31 | 1+(−5.18+2.99i)T+(15.5−26.8i)T2 |
| 37 | 1+5.84T+37T2 |
| 41 | 1+(0.0472+0.0817i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.05+5.29i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.57−4.45i)T+(−23.5−40.7i)T2 |
| 53 | 1+3.18iT−53T2 |
| 59 | 1+(4.42+7.65i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.06+2.34i)T+(30.5+52.8i)T2 |
| 67 | 1+(−0.187−0.325i)T+(−33.5+58.0i)T2 |
| 71 | 1+13.9iT−71T2 |
| 73 | 1+1.31iT−73T2 |
| 79 | 1+(0.462−0.800i)T+(−39.5−68.4i)T2 |
| 83 | 1+(5.43−9.40i)T+(−41.5−71.8i)T2 |
| 89 | 1+4.70T+89T2 |
| 97 | 1+(−13.3−7.69i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.738832457967267998931709563985, −7.911660081542749768162392990247, −7.09133408721228240691676251498, −6.43997329341671585454187722564, −4.89453322300004731183117159726, −4.66811029195706192022489137416, −3.65633408770352291387157815747, −2.48640013672105739723492275378, −1.26116240922118748072791123922, −0.31590253289337403104240652563,
1.35790983184296411112198020882, 2.73488289944109711356701629690, 3.50692652192014154239736502235, 4.37542831837878270118289853150, 5.69072033252672201666627758647, 6.41941446036274708077623799022, 6.98732246177419610402113678100, 7.72949529324397990396931106037, 8.331809494285850705906967445482, 9.123667651715400272902786576829