L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (−1.77 − 3.07i)5-s − 0.999i·8-s + 3.55i·10-s + (2.61 + 1.51i)11-s + (−0.888 + 0.513i)13-s + (−0.5 + 0.866i)16-s − 1.61·17-s − 8.22i·19-s + (1.77 − 3.07i)20-s + (−1.51 − 2.61i)22-s + (2.90 − 1.67i)23-s + (−3.80 + 6.59i)25-s + 1.02·26-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.794 − 1.37i)5-s − 0.353i·8-s + 1.12i·10-s + (0.789 + 0.455i)11-s + (−0.246 + 0.142i)13-s + (−0.125 + 0.216i)16-s − 0.392·17-s − 1.88i·19-s + (0.397 − 0.687i)20-s + (−0.322 − 0.558i)22-s + (0.606 − 0.350i)23-s + (−0.761 + 1.31i)25-s + 0.201·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00551i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.00551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6872675926\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6872675926\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.77 + 3.07i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.61 - 1.51i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.888 - 0.513i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.61T + 17T^{2} \) |
| 19 | \( 1 + 8.22iT - 19T^{2} \) |
| 23 | \( 1 + (-2.90 + 1.67i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.70 - 2.13i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.18 + 2.99i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.84T + 37T^{2} \) |
| 41 | \( 1 + (0.0472 + 0.0817i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.05 + 5.29i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.57 - 4.45i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3.18iT - 53T^{2} \) |
| 59 | \( 1 + (4.42 + 7.65i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.06 + 2.34i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.187 - 0.325i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.9iT - 71T^{2} \) |
| 73 | \( 1 + 1.31iT - 73T^{2} \) |
| 79 | \( 1 + (0.462 - 0.800i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.43 - 9.40i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 4.70T + 89T^{2} \) |
| 97 | \( 1 + (-13.3 - 7.69i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.738832457967267998931709563985, −7.911660081542749768162392990247, −7.09133408721228240691676251498, −6.43997329341671585454187722564, −4.89453322300004731183117159726, −4.66811029195706192022489137416, −3.65633408770352291387157815747, −2.48640013672105739723492275378, −1.26116240922118748072791123922, −0.31590253289337403104240652563,
1.35790983184296411112198020882, 2.73488289944109711356701629690, 3.50692652192014154239736502235, 4.37542831837878270118289853150, 5.69072033252672201666627758647, 6.41941446036274708077623799022, 6.98732246177419610402113678100, 7.72949529324397990396931106037, 8.331809494285850705906967445482, 9.123667651715400272902786576829