L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.0338 + 0.0585i)5-s + 0.999i·8-s + 0.0676i·10-s + (−3.40 − 1.96i)11-s + (3.32 − 1.92i)13-s + (−0.5 + 0.866i)16-s + 1.55·17-s + 5.84i·19-s + (−0.0338 + 0.0585i)20-s + (−1.96 − 3.40i)22-s + (4.78 − 2.76i)23-s + (2.49 − 4.32i)25-s + 3.84·26-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.0151 + 0.0261i)5-s + 0.353i·8-s + 0.0213i·10-s + (−1.02 − 0.592i)11-s + (0.922 − 0.532i)13-s + (−0.125 + 0.216i)16-s + 0.376·17-s + 1.34i·19-s + (−0.00755 + 0.0130i)20-s + (−0.418 − 0.725i)22-s + (0.998 − 0.576i)23-s + (0.499 − 0.865i)25-s + 0.753·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.870 - 0.491i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.870 - 0.491i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.684590694\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.684590694\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.0338 - 0.0585i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.40 + 1.96i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.32 + 1.92i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.55T + 17T^{2} \) |
| 19 | \( 1 - 5.84iT - 19T^{2} \) |
| 23 | \( 1 + (-4.78 + 2.76i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.20 + 0.697i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.09 + 0.632i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.71T + 37T^{2} \) |
| 41 | \( 1 + (-5.17 - 8.96i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.735 + 1.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.77 - 3.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.26iT - 53T^{2} \) |
| 59 | \( 1 + (-4.70 - 8.14i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.0705 - 0.0407i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.67 - 13.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.30iT - 71T^{2} \) |
| 73 | \( 1 + 7.07iT - 73T^{2} \) |
| 79 | \( 1 + (-3.42 + 5.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.93 - 6.81i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 11.6T + 89T^{2} \) |
| 97 | \( 1 + (0.363 + 0.209i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.568657136159491831677068786271, −8.131941017045725050150658076642, −7.48018817965114455666102849744, −6.34026230352142840873320812017, −5.90393093556884933823605987433, −5.10332735759755685377831061170, −4.19222539618042779795494699969, −3.25666186315684026641677962707, −2.54078302934964964426328638483, −0.965746789316351674721834741205,
0.969110174273724350974627711791, 2.21398704546726729023298272551, 3.06309768176040708452415645919, 3.99323762233507507441169882136, 4.94349760477462411009794594598, 5.43386832154310853629961202877, 6.47954336432207305861835373425, 7.18281376113084403998361035876, 7.916839214754933924352361453620, 9.046608126338897003246847271782