L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.0338 + 0.0585i)5-s + 0.999i·8-s + 0.0676i·10-s + (−3.40 − 1.96i)11-s + (3.32 − 1.92i)13-s + (−0.5 + 0.866i)16-s + 1.55·17-s + 5.84i·19-s + (−0.0338 + 0.0585i)20-s + (−1.96 − 3.40i)22-s + (4.78 − 2.76i)23-s + (2.49 − 4.32i)25-s + 3.84·26-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.0151 + 0.0261i)5-s + 0.353i·8-s + 0.0213i·10-s + (−1.02 − 0.592i)11-s + (0.922 − 0.532i)13-s + (−0.125 + 0.216i)16-s + 0.376·17-s + 1.34i·19-s + (−0.00755 + 0.0130i)20-s + (−0.418 − 0.725i)22-s + (0.998 − 0.576i)23-s + (0.499 − 0.865i)25-s + 0.753·26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(0.870−0.491i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(0.870−0.491i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
0.870−0.491i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(1763,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), 0.870−0.491i)
|
Particular Values
L(1) |
≈ |
2.684590694 |
L(21) |
≈ |
2.684590694 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−0.0338−0.0585i)T+(−2.5+4.33i)T2 |
| 11 | 1+(3.40+1.96i)T+(5.5+9.52i)T2 |
| 13 | 1+(−3.32+1.92i)T+(6.5−11.2i)T2 |
| 17 | 1−1.55T+17T2 |
| 19 | 1−5.84iT−19T2 |
| 23 | 1+(−4.78+2.76i)T+(11.5−19.9i)T2 |
| 29 | 1+(1.20+0.697i)T+(14.5+25.1i)T2 |
| 31 | 1+(−1.09+0.632i)T+(15.5−26.8i)T2 |
| 37 | 1−8.71T+37T2 |
| 41 | 1+(−5.17−8.96i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.735+1.27i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.77−3.06i)T+(−23.5−40.7i)T2 |
| 53 | 1+7.26iT−53T2 |
| 59 | 1+(−4.70−8.14i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.0705−0.0407i)T+(30.5+52.8i)T2 |
| 67 | 1+(−7.67−13.2i)T+(−33.5+58.0i)T2 |
| 71 | 1+4.30iT−71T2 |
| 73 | 1+7.07iT−73T2 |
| 79 | 1+(−3.42+5.92i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.93−6.81i)T+(−41.5−71.8i)T2 |
| 89 | 1−11.6T+89T2 |
| 97 | 1+(0.363+0.209i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.568657136159491831677068786271, −8.131941017045725050150658076642, −7.48018817965114455666102849744, −6.34026230352142840873320812017, −5.90393093556884933823605987433, −5.10332735759755685377831061170, −4.19222539618042779795494699969, −3.25666186315684026641677962707, −2.54078302934964964426328638483, −0.965746789316351674721834741205,
0.969110174273724350974627711791, 2.21398704546726729023298272551, 3.06309768176040708452415645919, 3.99323762233507507441169882136, 4.94349760477462411009794594598, 5.43386832154310853629961202877, 6.47954336432207305861835373425, 7.18281376113084403998361035876, 7.916839214754933924352361453620, 9.046608126338897003246847271782