L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.220 + 0.381i)5-s + 0.999i·8-s − 0.440i·10-s + (0.450 − 0.260i)11-s + (−5.55 − 3.20i)13-s + (−0.5 − 0.866i)16-s − 0.327·17-s − 4.23i·19-s + (0.220 + 0.381i)20-s + (−0.260 + 0.450i)22-s + (−1.25 − 0.725i)23-s + (2.40 + 4.16i)25-s + 6.40·26-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.0984 + 0.170i)5-s + 0.353i·8-s − 0.139i·10-s + (0.135 − 0.0784i)11-s + (−1.53 − 0.888i)13-s + (−0.125 − 0.216i)16-s − 0.0793·17-s − 0.972i·19-s + (0.0492 + 0.0852i)20-s + (−0.0554 + 0.0960i)22-s + (−0.261 − 0.151i)23-s + (0.480 + 0.832i)25-s + 1.25·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.147 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.147 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7959629256\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7959629256\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.220 - 0.381i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.450 + 0.260i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (5.55 + 3.20i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 0.327T + 17T^{2} \) |
| 19 | \( 1 + 4.23iT - 19T^{2} \) |
| 23 | \( 1 + (1.25 + 0.725i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.74 - 3.31i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-6.07 - 3.50i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.68T + 37T^{2} \) |
| 41 | \( 1 + (2.96 - 5.13i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.21 - 9.03i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.02 - 6.97i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.95iT - 53T^{2} \) |
| 59 | \( 1 + (-2.45 + 4.24i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.33 + 0.771i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.26 - 5.65i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 16.2iT - 71T^{2} \) |
| 73 | \( 1 - 4.12iT - 73T^{2} \) |
| 79 | \( 1 + (-0.662 - 1.14i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.55 + 14.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 11.7T + 89T^{2} \) |
| 97 | \( 1 + (10.6 - 6.12i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.073305455695238834155179522908, −8.263973166307524637795692330475, −7.48640157600280249229949539770, −7.02688377114342051659684316278, −6.11514914682360265389513712817, −5.19891211894828725450672317433, −4.56768924318596683687947461123, −3.15914550039202470078754924680, −2.42524624421761607873348039778, −0.991096002444467319554657937452,
0.37479309074308555550342390143, 1.88083493192270947513988543608, 2.56463661055296688960908660503, 3.87306120605792020552423948196, 4.50459170890432988840462080517, 5.58445916397406422508507613925, 6.50748934038056720275358056536, 7.36012405839420032043295835476, 7.86180818683014211798337300717, 8.800539966619166823178958706936