L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.220 + 0.381i)5-s + 0.999i·8-s − 0.440i·10-s + (0.450 − 0.260i)11-s + (−5.55 − 3.20i)13-s + (−0.5 − 0.866i)16-s − 0.327·17-s − 4.23i·19-s + (0.220 + 0.381i)20-s + (−0.260 + 0.450i)22-s + (−1.25 − 0.725i)23-s + (2.40 + 4.16i)25-s + 6.40·26-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.0984 + 0.170i)5-s + 0.353i·8-s − 0.139i·10-s + (0.135 − 0.0784i)11-s + (−1.53 − 0.888i)13-s + (−0.125 − 0.216i)16-s − 0.0793·17-s − 0.972i·19-s + (0.0492 + 0.0852i)20-s + (−0.0554 + 0.0960i)22-s + (−0.261 − 0.151i)23-s + (0.480 + 0.832i)25-s + 1.25·26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(−0.147−0.988i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(−0.147−0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
−0.147−0.988i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(881,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), −0.147−0.988i)
|
Particular Values
L(1) |
≈ |
0.7959629256 |
L(21) |
≈ |
0.7959629256 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(0.220−0.381i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.450+0.260i)T+(5.5−9.52i)T2 |
| 13 | 1+(5.55+3.20i)T+(6.5+11.2i)T2 |
| 17 | 1+0.327T+17T2 |
| 19 | 1+4.23iT−19T2 |
| 23 | 1+(1.25+0.725i)T+(11.5+19.9i)T2 |
| 29 | 1+(5.74−3.31i)T+(14.5−25.1i)T2 |
| 31 | 1+(−6.07−3.50i)T+(15.5+26.8i)T2 |
| 37 | 1−3.68T+37T2 |
| 41 | 1+(2.96−5.13i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−5.21−9.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.02−6.97i)T+(−23.5+40.7i)T2 |
| 53 | 1+7.95iT−53T2 |
| 59 | 1+(−2.45+4.24i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.33+0.771i)T+(30.5−52.8i)T2 |
| 67 | 1+(3.26−5.65i)T+(−33.5−58.0i)T2 |
| 71 | 1−16.2iT−71T2 |
| 73 | 1−4.12iT−73T2 |
| 79 | 1+(−0.662−1.14i)T+(−39.5+68.4i)T2 |
| 83 | 1+(8.55+14.8i)T+(−41.5+71.8i)T2 |
| 89 | 1−11.7T+89T2 |
| 97 | 1+(10.6−6.12i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.073305455695238834155179522908, −8.263973166307524637795692330475, −7.48640157600280249229949539770, −7.02688377114342051659684316278, −6.11514914682360265389513712817, −5.19891211894828725450672317433, −4.56768924318596683687947461123, −3.15914550039202470078754924680, −2.42524624421761607873348039778, −0.991096002444467319554657937452,
0.37479309074308555550342390143, 1.88083493192270947513988543608, 2.56463661055296688960908660503, 3.87306120605792020552423948196, 4.50459170890432988840462080517, 5.58445916397406422508507613925, 6.50748934038056720275358056536, 7.36012405839420032043295835476, 7.86180818683014211798337300717, 8.800539966619166823178958706936