L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s − 1.84·5-s + 1.41i·7-s + (−0.923 + 0.382i)8-s + (−0.707 + 1.70i)10-s + (1.30 + 0.541i)14-s + i·16-s − 1.84i·17-s + (1.30 + 1.30i)20-s + 1.84·23-s + 2.41·25-s + (1.00 − i)28-s + 0.765·29-s + (0.923 + 0.382i)32-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s − 1.84·5-s + 1.41i·7-s + (−0.923 + 0.382i)8-s + (−0.707 + 1.70i)10-s + (1.30 + 0.541i)14-s + i·16-s − 1.84i·17-s + (1.30 + 1.30i)20-s + 1.84·23-s + 2.41·25-s + (1.00 − i)28-s + 0.765·29-s + (0.923 + 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8998823818\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8998823818\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 + 0.923i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + iT \) |
good | 5 | \( 1 + 1.84T + T^{2} \) |
| 7 | \( 1 - 1.41iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 1.84iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 1.84T + T^{2} \) |
| 29 | \( 1 - 0.765T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.84iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.41T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 0.765iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.977106575892864554128796470041, −8.377680652823940299448848468934, −7.43168210038482305837555609867, −6.65024640637757604134622637285, −5.32804851592166107262293779607, −4.93571787195976445387616057831, −4.01637560996657393869427880899, −3.03086757903055465057292838216, −2.59298913796615371330345718112, −0.795240026356658582282098779273,
0.874008472681171131240413780436, 3.24879307978255272710451852445, 3.73357428342909657581953319407, 4.42916645294775167487959775390, 5.04101526718071522720207282624, 6.47996042471081427569097084955, 6.91517655594228027672360788495, 7.64447584027773166729967179063, 8.203909973594439901147148697282, 8.677529477118951821468296493547