L(s) = 1 | + (−1.87 − 3.24i)5-s + (2.03 + 3.52i)7-s − 1.66·11-s + (0.106 + 0.184i)13-s + (−0.5 + 0.866i)17-s + (−0.271 − 0.470i)19-s + 4.61·23-s + (−4.51 + 7.82i)25-s − 9.65·29-s − 1.66·31-s + (7.62 − 13.2i)35-s + (−3.22 − 5.16i)37-s + (−0.729 − 1.26i)41-s − 2.74·43-s − 3.89·47-s + ⋯ |
L(s) = 1 | + (−0.837 − 1.45i)5-s + (0.769 + 1.33i)7-s − 0.503·11-s + (0.0295 + 0.0511i)13-s + (−0.121 + 0.210i)17-s + (−0.0623 − 0.107i)19-s + 0.962·23-s + (−0.903 + 1.56i)25-s − 1.79·29-s − 0.299·31-s + (1.28 − 2.23i)35-s + (−0.529 − 0.848i)37-s + (−0.113 − 0.197i)41-s − 0.418·43-s − 0.568·47-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.648−0.761i)Λ(2−s)
Λ(s)=(=(2664s/2ΓC(s+1/2)L(s)(−0.648−0.761i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
−0.648−0.761i
|
Analytic conductor: |
21.2721 |
Root analytic conductor: |
4.61217 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1009,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :1/2), −0.648−0.761i)
|
Particular Values
L(1) |
≈ |
0.4119416710 |
L(21) |
≈ |
0.4119416710 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1+(3.22+5.16i)T |
good | 5 | 1+(1.87+3.24i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−2.03−3.52i)T+(−3.5+6.06i)T2 |
| 11 | 1+1.66T+11T2 |
| 13 | 1+(−0.106−0.184i)T+(−6.5+11.2i)T2 |
| 17 | 1+(0.5−0.866i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.271+0.470i)T+(−9.5+16.4i)T2 |
| 23 | 1−4.61T+23T2 |
| 29 | 1+9.65T+29T2 |
| 31 | 1+1.66T+31T2 |
| 41 | 1+(0.729+1.26i)T+(−20.5+35.5i)T2 |
| 43 | 1+2.74T+43T2 |
| 47 | 1+3.89T+47T2 |
| 53 | 1+(3.86−6.69i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−0.563+0.975i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.85−4.95i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.01+5.22i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.49−6.05i)T+(−35.5+61.4i)T2 |
| 73 | 1−2.12T+73T2 |
| 79 | 1+(−4.77−8.27i)T+(−39.5+68.4i)T2 |
| 83 | 1+(6.22−10.7i)T+(−41.5−71.8i)T2 |
| 89 | 1+(2.72−4.72i)T+(−44.5−77.0i)T2 |
| 97 | 1+9.99T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.068705279174907420784985276124, −8.345281669393610167276172889117, −7.922278261798383152107200968022, −7.00591261318680721115560553392, −5.59581235284750078582272780976, −5.32625541770788964693322956346, −4.54169240213270974247844912926, −3.63475475489356609995755885780, −2.35089800590800378149833593014, −1.36123029326194816673563989172,
0.13537316502969334761080629619, 1.71848423897861483772371747724, 3.02385409837256913777035877277, 3.65257745328208434445906413192, 4.47941103392809050505712006633, 5.38119438952972808538621025543, 6.65820431231124756928545820751, 7.08934960012281132223244585264, 7.73618134472575958645295804138, 8.223499772622360641345494103932