L(s) = 1 | + (−0.478 + 1.78i)3-s + (0.866 − 0.5i)4-s + (−0.608 − 0.793i)5-s + (−2.09 − 1.20i)9-s + (−0.5 − 0.866i)11-s + (0.478 + 1.78i)12-s + (1.70 − 0.707i)15-s + (0.499 − 0.866i)16-s + (−0.923 − 0.382i)20-s + (−0.258 + 0.965i)25-s + (1.84 − 1.84i)27-s + (1.60 − 0.923i)31-s + (1.78 − 0.478i)33-s − 2.41·36-s + (1.36 − 0.366i)37-s + ⋯ |
L(s) = 1 | + (−0.478 + 1.78i)3-s + (0.866 − 0.5i)4-s + (−0.608 − 0.793i)5-s + (−2.09 − 1.20i)9-s + (−0.5 − 0.866i)11-s + (0.478 + 1.78i)12-s + (1.70 − 0.707i)15-s + (0.499 − 0.866i)16-s + (−0.923 − 0.382i)20-s + (−0.258 + 0.965i)25-s + (1.84 − 1.84i)27-s + (1.60 − 0.923i)31-s + (1.78 − 0.478i)33-s − 2.41·36-s + (1.36 − 0.366i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9853343646\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9853343646\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.608 + 0.793i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 3 | \( 1 + (0.478 - 1.78i)T + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1.60 + 0.923i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.198 + 0.739i)T + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-1.93 - 0.517i)T + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.517 + 1.93i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.923 + 1.60i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.541 - 0.541i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.176412171496895789535022576801, −8.383857491123115230811600058368, −7.66094423870591008754432117703, −6.34399948232781795776581414759, −5.74726047833942196354265905216, −5.07838373095918629139048229415, −4.36115864943185967993206552287, −3.51959532673602095208878637254, −2.61051015284575991493450757889, −0.71099184059421557461429941121,
1.31163913442791294851983040390, 2.52048874206024513591182655671, 2.80399200543493871595289629005, 4.23654492790321370837822487716, 5.51720484045657427383147223638, 6.40539288473565193777510077884, 6.84359376618588667289915563137, 7.41269350542108326146896727318, 7.953188807107627904714117357044, 8.513283486963020151795443862605