L(s) = 1 | + (−1.22 − 0.707i)3-s + (0.5 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (0.499 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (−1.22 + 0.707i)12-s + (1 − 0.999i)15-s + (−0.499 − 0.866i)16-s + (0.707 + 0.707i)20-s + (1.73 − i)23-s + (−0.866 − 0.499i)25-s + (0.707 − 1.22i)31-s + (1.22 − 0.707i)33-s + 0.999·36-s + (0.499 + 0.866i)44-s + (−0.965 + 0.258i)45-s + ⋯ |
L(s) = 1 | + (−1.22 − 0.707i)3-s + (0.5 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (0.499 + 0.866i)9-s + (−0.5 + 0.866i)11-s + (−1.22 + 0.707i)12-s + (1 − 0.999i)15-s + (−0.499 − 0.866i)16-s + (0.707 + 0.707i)20-s + (1.73 − i)23-s + (−0.866 − 0.499i)25-s + (0.707 − 1.22i)31-s + (1.22 − 0.707i)33-s + 0.999·36-s + (0.499 + 0.866i)44-s + (−0.965 + 0.258i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.328 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.328 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7829996784\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7829996784\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.258 - 0.965i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.952565841678309393584710467693, −7.64076060784873612259706004692, −7.12782232833497550880412687891, −6.61084890592465899042443091408, −5.95070040028989505877822276498, −5.22411615682836248400278104398, −4.38262605739193287721777198036, −2.84830007165578642747408836879, −2.05244296524252265900292960449, −0.71885221688529286051645531665,
1.07305421619055593239645515158, 2.77749679417656683171763146478, 3.72067288005102341631711277355, 4.54788257366943927555891010175, 5.31577927695807387920028645600, 5.85081032061875640082497510171, 6.90661779813281065210807759010, 7.60848900579968908989184195382, 8.592510303444214183176486170027, 8.947484832249715924605580129400