L(s) = 1 | + (−9.97 + 1.75i)2-s + (24.1 + 12.1i)3-s + (36.1 − 13.1i)4-s + (60.9 − 72.6i)5-s + (−261. − 78.3i)6-s + (−133. − 48.6i)7-s + (223. − 129. i)8-s + (435. + 584. i)9-s + (−480. + 832. i)10-s + (1.62e3 + 1.93e3i)11-s + (1.03e3 + 120. i)12-s + (−126. + 717. i)13-s + (1.41e3 + 250. i)14-s + (2.35e3 − 1.01e3i)15-s + (−3.88e3 + 3.26e3i)16-s + (4.21e3 + 2.43e3i)17-s + ⋯ |
L(s) = 1 | + (−1.24 + 0.219i)2-s + (0.893 + 0.448i)3-s + (0.565 − 0.205i)4-s + (0.487 − 0.581i)5-s + (−1.21 − 0.362i)6-s + (−0.390 − 0.141i)7-s + (0.436 − 0.252i)8-s + (0.597 + 0.801i)9-s + (−0.480 + 0.832i)10-s + (1.22 + 1.45i)11-s + (0.597 + 0.0696i)12-s + (−0.0575 + 0.326i)13-s + (0.517 + 0.0912i)14-s + (0.696 − 0.300i)15-s + (−0.949 + 0.796i)16-s + (0.856 + 0.494i)17-s + ⋯ |
Λ(s)=(=(27s/2ΓC(s)L(s)(0.596−0.802i)Λ(7−s)
Λ(s)=(=(27s/2ΓC(s+3)L(s)(0.596−0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
27
= 33
|
Sign: |
0.596−0.802i
|
Analytic conductor: |
6.21146 |
Root analytic conductor: |
2.49228 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 27, ( :3), 0.596−0.802i)
|
Particular Values
L(27) |
≈ |
1.08295+0.544511i |
L(21) |
≈ |
1.08295+0.544511i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−24.1−12.1i)T |
good | 2 | 1+(9.97−1.75i)T+(60.1−21.8i)T2 |
| 5 | 1+(−60.9+72.6i)T+(−2.71e3−1.53e4i)T2 |
| 7 | 1+(133.+48.6i)T+(9.01e4+7.56e4i)T2 |
| 11 | 1+(−1.62e3−1.93e3i)T+(−3.07e5+1.74e6i)T2 |
| 13 | 1+(126.−717.i)T+(−4.53e6−1.65e6i)T2 |
| 17 | 1+(−4.21e3−2.43e3i)T+(1.20e7+2.09e7i)T2 |
| 19 | 1+(−62.0−107.i)T+(−2.35e7+4.07e7i)T2 |
| 23 | 1+(4.13e3+1.13e4i)T+(−1.13e8+9.51e7i)T2 |
| 29 | 1+(−2.21e4+3.91e3i)T+(5.58e8−2.03e8i)T2 |
| 31 | 1+(−1.41e4+5.13e3i)T+(6.79e8−5.70e8i)T2 |
| 37 | 1+(−1.72e4+2.99e4i)T+(−1.28e9−2.22e9i)T2 |
| 41 | 1+(8.70e4+1.53e4i)T+(4.46e9+1.62e9i)T2 |
| 43 | 1+(4.95e3−4.15e3i)T+(1.09e9−6.22e9i)T2 |
| 47 | 1+(−5.96e4+1.63e5i)T+(−8.25e9−6.92e9i)T2 |
| 53 | 1−2.77e5iT−2.21e10T2 |
| 59 | 1+(−6.67e4+7.95e4i)T+(−7.32e9−4.15e10i)T2 |
| 61 | 1+(2.84e5+1.03e5i)T+(3.94e10+3.31e10i)T2 |
| 67 | 1+(7.05e3−3.99e4i)T+(−8.50e10−3.09e10i)T2 |
| 71 | 1+(8.73e3+5.04e3i)T+(6.40e10+1.10e11i)T2 |
| 73 | 1+(−1.59e5−2.75e5i)T+(−7.56e10+1.31e11i)T2 |
| 79 | 1+(−1.17e4−6.63e4i)T+(−2.28e11+8.31e10i)T2 |
| 83 | 1+(9.75e5−1.72e5i)T+(3.07e11−1.11e11i)T2 |
| 89 | 1+(1.69e5−9.79e4i)T+(2.48e11−4.30e11i)T2 |
| 97 | 1+(−9.81e5+8.23e5i)T+(1.44e11−8.20e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.59143083879334815328348446552, −15.18990271789207063995756824233, −13.90011252943384485070535928477, −12.48695764975568683232251265263, −10.15671272888729288920391646092, −9.513563306340111874200109526233, −8.487845488228712791259574822730, −7.00903951116024956798215645228, −4.30239394815521649551556003621, −1.61269623752675205124917179934,
1.13650830990174735426884987872, 3.06567213644819312787242656600, 6.46417044341946819333415029701, 8.036402912990855935773208761640, 9.161037278793227408384916949424, 10.14009661499303150013821996697, 11.74726504697007505399474797805, 13.65139610327940066077269834879, 14.35079063271483588461751883541, 16.12586247732643564364489537441