L(s) = 1 | + (1.51 + 0.267i)2-s + (26.8 − 2.67i)3-s + (−57.9 − 21.0i)4-s + (−139. − 165. i)5-s + (41.4 + 3.13i)6-s + (−39.0 + 14.2i)7-s + (−167. − 96.6i)8-s + (714. − 143. i)9-s + (−166. − 288. i)10-s + (−170. + 203. i)11-s + (−1.61e3 − 411. i)12-s + (−454. − 2.57e3i)13-s + (−62.9 + 11.0i)14-s + (−4.18e3 − 4.08e3i)15-s + (2.79e3 + 2.34e3i)16-s + (4.58e3 − 2.64e3i)17-s + ⋯ |
L(s) = 1 | + (0.189 + 0.0333i)2-s + (0.995 − 0.0989i)3-s + (−0.904 − 0.329i)4-s + (−1.11 − 1.32i)5-s + (0.191 + 0.0144i)6-s + (−0.113 + 0.0414i)7-s + (−0.326 − 0.188i)8-s + (0.980 − 0.196i)9-s + (−0.166 − 0.288i)10-s + (−0.128 + 0.152i)11-s + (−0.933 − 0.238i)12-s + (−0.206 − 1.17i)13-s + (−0.0229 + 0.00404i)14-s + (−1.23 − 1.20i)15-s + (0.682 + 0.572i)16-s + (0.933 − 0.538i)17-s + ⋯ |
Λ(s)=(=(27s/2ΓC(s)L(s)(−0.443+0.896i)Λ(7−s)
Λ(s)=(=(27s/2ΓC(s+3)L(s)(−0.443+0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
27
= 33
|
Sign: |
−0.443+0.896i
|
Analytic conductor: |
6.21146 |
Root analytic conductor: |
2.49228 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 27, ( :3), −0.443+0.896i)
|
Particular Values
L(27) |
≈ |
0.710165−1.14327i |
L(21) |
≈ |
0.710165−1.14327i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−26.8+2.67i)T |
good | 2 | 1+(−1.51−0.267i)T+(60.1+21.8i)T2 |
| 5 | 1+(139.+165.i)T+(−2.71e3+1.53e4i)T2 |
| 7 | 1+(39.0−14.2i)T+(9.01e4−7.56e4i)T2 |
| 11 | 1+(170.−203.i)T+(−3.07e5−1.74e6i)T2 |
| 13 | 1+(454.+2.57e3i)T+(−4.53e6+1.65e6i)T2 |
| 17 | 1+(−4.58e3+2.64e3i)T+(1.20e7−2.09e7i)T2 |
| 19 | 1+(3.57e3−6.18e3i)T+(−2.35e7−4.07e7i)T2 |
| 23 | 1+(−4.13e3+1.13e4i)T+(−1.13e8−9.51e7i)T2 |
| 29 | 1+(−1.49e4−2.63e3i)T+(5.58e8+2.03e8i)T2 |
| 31 | 1+(2.51e4+9.15e3i)T+(6.79e8+5.70e8i)T2 |
| 37 | 1+(−7.67e3−1.32e4i)T+(−1.28e9+2.22e9i)T2 |
| 41 | 1+(−9.75e4+1.71e4i)T+(4.46e9−1.62e9i)T2 |
| 43 | 1+(6.71e4+5.63e4i)T+(1.09e9+6.22e9i)T2 |
| 47 | 1+(5.82e4+1.60e5i)T+(−8.25e9+6.92e9i)T2 |
| 53 | 1−8.80e3iT−2.21e10T2 |
| 59 | 1+(−1.07e5−1.27e5i)T+(−7.32e9+4.15e10i)T2 |
| 61 | 1+(−4.06e5+1.48e5i)T+(3.94e10−3.31e10i)T2 |
| 67 | 1+(5.09e4+2.89e5i)T+(−8.50e10+3.09e10i)T2 |
| 71 | 1+(−1.92e5+1.10e5i)T+(6.40e10−1.10e11i)T2 |
| 73 | 1+(−1.48e5+2.57e5i)T+(−7.56e10−1.31e11i)T2 |
| 79 | 1+(1.23e5−7.00e5i)T+(−2.28e11−8.31e10i)T2 |
| 83 | 1+(3.72e5+6.57e4i)T+(3.07e11+1.11e11i)T2 |
| 89 | 1+(6.67e5+3.85e5i)T+(2.48e11+4.30e11i)T2 |
| 97 | 1+(−5.76e5−4.83e5i)T+(1.44e11+8.20e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.41954137199437279658927075997, −14.44286984863694098856275619239, −12.94962242570940379912194899393, −12.42551964875352118015586905745, −9.986191376696520369354932486648, −8.678078485149980194173562674592, −7.87992864498215226642534739836, −5.05419508999541134645555264642, −3.71302458660262966545310862963, −0.69471934502924925791398832691,
3.08688909815106196958698049891, 4.19523087737649406128837474159, 7.11414802376640864643319296855, 8.274097680763505542163930910357, 9.703013013686356089879322028273, 11.32682388961255975742489832384, 12.86606509450028175902787902619, 14.24932729545923284471512537938, 14.79375580301738198757700441913, 16.12474837227987777327980111884