L(s) = 1 | + (−0.698 − 0.123i)2-s + (20.3 + 17.7i)3-s + (−59.6 − 21.7i)4-s + (95.6 + 113. i)5-s + (−12.0 − 14.9i)6-s + (−285. + 103. i)7-s + (78.3 + 45.2i)8-s + (96.7 + 722. i)9-s + (−52.7 − 91.3i)10-s + (−448. + 534. i)11-s + (−826. − 1.50e3i)12-s + (509. + 2.88e3i)13-s + (212. − 37.4i)14-s + (−83.1 + 4.01e3i)15-s + (3.06e3 + 2.57e3i)16-s + (−3.11e3 + 1.79e3i)17-s + ⋯ |
L(s) = 1 | + (−0.0873 − 0.0153i)2-s + (0.752 + 0.658i)3-s + (−0.932 − 0.339i)4-s + (0.764 + 0.911i)5-s + (−0.0555 − 0.0690i)6-s + (−0.832 + 0.303i)7-s + (0.152 + 0.0883i)8-s + (0.132 + 0.991i)9-s + (−0.0527 − 0.0913i)10-s + (−0.336 + 0.401i)11-s + (−0.478 − 0.869i)12-s + (0.231 + 1.31i)13-s + (0.0773 − 0.0136i)14-s + (−0.0246 + 1.18i)15-s + (0.748 + 0.627i)16-s + (−0.633 + 0.365i)17-s + ⋯ |
Λ(s)=(=(27s/2ΓC(s)L(s)(−0.226−0.973i)Λ(7−s)
Λ(s)=(=(27s/2ΓC(s+3)L(s)(−0.226−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
27
= 33
|
Sign: |
−0.226−0.973i
|
Analytic conductor: |
6.21146 |
Root analytic conductor: |
2.49228 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 27, ( :3), −0.226−0.973i)
|
Particular Values
L(27) |
≈ |
0.918777+1.15729i |
L(21) |
≈ |
0.918777+1.15729i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−20.3−17.7i)T |
good | 2 | 1+(0.698+0.123i)T+(60.1+21.8i)T2 |
| 5 | 1+(−95.6−113.i)T+(−2.71e3+1.53e4i)T2 |
| 7 | 1+(285.−103.i)T+(9.01e4−7.56e4i)T2 |
| 11 | 1+(448.−534.i)T+(−3.07e5−1.74e6i)T2 |
| 13 | 1+(−509.−2.88e3i)T+(−4.53e6+1.65e6i)T2 |
| 17 | 1+(3.11e3−1.79e3i)T+(1.20e7−2.09e7i)T2 |
| 19 | 1+(−4.61e3+7.99e3i)T+(−2.35e7−4.07e7i)T2 |
| 23 | 1+(−7.85e3+2.15e4i)T+(−1.13e8−9.51e7i)T2 |
| 29 | 1+(−1.94e4−3.42e3i)T+(5.58e8+2.03e8i)T2 |
| 31 | 1+(−4.80e3−1.74e3i)T+(6.79e8+5.70e8i)T2 |
| 37 | 1+(−7.32e3−1.26e4i)T+(−1.28e9+2.22e9i)T2 |
| 41 | 1+(1.90e4−3.35e3i)T+(4.46e9−1.62e9i)T2 |
| 43 | 1+(−1.10e5−9.29e4i)T+(1.09e9+6.22e9i)T2 |
| 47 | 1+(1.39e3+3.83e3i)T+(−8.25e9+6.92e9i)T2 |
| 53 | 1+1.80e5iT−2.21e10T2 |
| 59 | 1+(−1.73e5−2.07e5i)T+(−7.32e9+4.15e10i)T2 |
| 61 | 1+(1.29e5−4.69e4i)T+(3.94e10−3.31e10i)T2 |
| 67 | 1+(−1.02e4−5.78e4i)T+(−8.50e10+3.09e10i)T2 |
| 71 | 1+(2.05e5−1.18e5i)T+(6.40e10−1.10e11i)T2 |
| 73 | 1+(−2.11e5+3.65e5i)T+(−7.56e10−1.31e11i)T2 |
| 79 | 1+(3.28e4−1.86e5i)T+(−2.28e11−8.31e10i)T2 |
| 83 | 1+(−7.57e5−1.33e5i)T+(3.07e11+1.11e11i)T2 |
| 89 | 1+(8.35e5+4.82e5i)T+(2.48e11+4.30e11i)T2 |
| 97 | 1+(−1.19e6−1.00e6i)T+(1.44e11+8.20e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.22304980298092642850845391862, −14.89769115461049387050207912845, −14.02196893423998630971242165336, −13.09563773321623590058645603271, −10.70023779045738467912301462931, −9.677867596498864548615305212779, −8.828446062978237835007140268756, −6.57211111343127118763223542853, −4.57764854979561784574286590662, −2.63593367198022911587396569889,
0.857538616887083412294377880335, 3.37142174333377133299333390633, 5.58880023407254327229130450129, 7.71642963415135658488187489319, 8.946958612509028558319028488376, 9.877702747018239101118963941912, 12.49794629353305759483766016879, 13.28607467734570921387385939021, 13.84967936176226846065502526685, 15.73352296927837285235346848928