L(s) = 1 | + (−0.173 − 0.984i)2-s + (1.11 + 1.32i)3-s + (−0.939 + 0.342i)4-s + (0.766 + 0.642i)5-s + (1.11 − 1.32i)6-s + (0.652 + 0.237i)7-s + (0.5 + 0.866i)8-s + (−0.520 + 2.95i)9-s + (0.5 − 0.866i)10-s + (1.62 − 1.36i)11-s + (−1.49 − 0.866i)12-s + (−0.532 + 3.01i)13-s + (0.120 − 0.684i)14-s + 1.73i·15-s + (0.766 − 0.642i)16-s + (0.826 − 1.43i)17-s + ⋯ |
L(s) = 1 | + (−0.122 − 0.696i)2-s + (0.642 + 0.766i)3-s + (−0.469 + 0.171i)4-s + (0.342 + 0.287i)5-s + (0.454 − 0.541i)6-s + (0.246 + 0.0897i)7-s + (0.176 + 0.306i)8-s + (−0.173 + 0.984i)9-s + (0.158 − 0.273i)10-s + (0.489 − 0.410i)11-s + (−0.433 − 0.249i)12-s + (−0.147 + 0.836i)13-s + (0.0322 − 0.182i)14-s + 0.447i·15-s + (0.191 − 0.160i)16-s + (0.200 − 0.347i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.973−0.230i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(0.973−0.230i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.973−0.230i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), 0.973−0.230i)
|
Particular Values
L(1) |
≈ |
1.48561+0.173643i |
L(21) |
≈ |
1.48561+0.173643i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.173+0.984i)T |
| 3 | 1+(−1.11−1.32i)T |
| 5 | 1+(−0.766−0.642i)T |
good | 7 | 1+(−0.652−0.237i)T+(5.36+4.49i)T2 |
| 11 | 1+(−1.62+1.36i)T+(1.91−10.8i)T2 |
| 13 | 1+(0.532−3.01i)T+(−12.2−4.44i)T2 |
| 17 | 1+(−0.826+1.43i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.29−2.24i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−4.18+1.52i)T+(17.6−14.7i)T2 |
| 29 | 1+(1.49+8.45i)T+(−27.2+9.91i)T2 |
| 31 | 1+(6.06−2.20i)T+(23.7−19.9i)T2 |
| 37 | 1+(−2+3.46i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.12+6.36i)T+(−38.5−14.0i)T2 |
| 43 | 1+(0.450−0.378i)T+(7.46−42.3i)T2 |
| 47 | 1+(4.75+1.73i)T+(36.0+30.2i)T2 |
| 53 | 1−6.82T+53T2 |
| 59 | 1+(3.98+3.34i)T+(10.2+58.1i)T2 |
| 61 | 1+(10.8+3.93i)T+(46.7+39.2i)T2 |
| 67 | 1+(0.774−4.39i)T+(−62.9−22.9i)T2 |
| 71 | 1+(5.36−9.30i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−3.86−6.69i)T+(−36.5+63.2i)T2 |
| 79 | 1+(0.0837+0.475i)T+(−74.2+27.0i)T2 |
| 83 | 1+(−1.45−8.26i)T+(−77.9+28.3i)T2 |
| 89 | 1+(6.56+11.3i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−12.0+10.1i)T+(16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64490988789608411117164272631, −11.00970446222121744802497820541, −9.962466408781774087529006805449, −9.287797109024783468792359933405, −8.470322369710060792398018905120, −7.24483173864364016964988217197, −5.64698137664089888496263871125, −4.40200372634762482763585610349, −3.33027061387772200000394541528, −2.02600829523625448412132962464,
1.40202267496782222944332189169, 3.23016217992112470000019674400, 4.86581299157743409332985341204, 6.05576889320444128321332552137, 7.13157446775848738263547794286, 7.86547872363994154166795798962, 8.922183599886993345332464540376, 9.559018872723210795651183712645, 10.88870956749795405660416151538, 12.22281388126373103034615810529