Properties

Label 2-270-27.13-c1-0-5
Degree 22
Conductor 270270
Sign 0.9730.230i0.973 - 0.230i
Analytic cond. 2.155962.15596
Root an. cond. 1.468311.46831
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)2-s + (1.11 + 1.32i)3-s + (−0.939 + 0.342i)4-s + (0.766 + 0.642i)5-s + (1.11 − 1.32i)6-s + (0.652 + 0.237i)7-s + (0.5 + 0.866i)8-s + (−0.520 + 2.95i)9-s + (0.5 − 0.866i)10-s + (1.62 − 1.36i)11-s + (−1.49 − 0.866i)12-s + (−0.532 + 3.01i)13-s + (0.120 − 0.684i)14-s + 1.73i·15-s + (0.766 − 0.642i)16-s + (0.826 − 1.43i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (0.642 + 0.766i)3-s + (−0.469 + 0.171i)4-s + (0.342 + 0.287i)5-s + (0.454 − 0.541i)6-s + (0.246 + 0.0897i)7-s + (0.176 + 0.306i)8-s + (−0.173 + 0.984i)9-s + (0.158 − 0.273i)10-s + (0.489 − 0.410i)11-s + (−0.433 − 0.249i)12-s + (−0.147 + 0.836i)13-s + (0.0322 − 0.182i)14-s + 0.447i·15-s + (0.191 − 0.160i)16-s + (0.200 − 0.347i)17-s + ⋯

Functional equation

Λ(s)=(270s/2ΓC(s)L(s)=((0.9730.230i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(270s/2ΓC(s+1/2)L(s)=((0.9730.230i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 270270    =    23352 \cdot 3^{3} \cdot 5
Sign: 0.9730.230i0.973 - 0.230i
Analytic conductor: 2.155962.15596
Root analytic conductor: 1.468311.46831
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ270(121,)\chi_{270} (121, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 270, ( :1/2), 0.9730.230i)(2,\ 270,\ (\ :1/2),\ 0.973 - 0.230i)

Particular Values

L(1)L(1) \approx 1.48561+0.173643i1.48561 + 0.173643i
L(12)L(\frac12) \approx 1.48561+0.173643i1.48561 + 0.173643i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
3 1+(1.111.32i)T 1 + (-1.11 - 1.32i)T
5 1+(0.7660.642i)T 1 + (-0.766 - 0.642i)T
good7 1+(0.6520.237i)T+(5.36+4.49i)T2 1 + (-0.652 - 0.237i)T + (5.36 + 4.49i)T^{2}
11 1+(1.62+1.36i)T+(1.9110.8i)T2 1 + (-1.62 + 1.36i)T + (1.91 - 10.8i)T^{2}
13 1+(0.5323.01i)T+(12.24.44i)T2 1 + (0.532 - 3.01i)T + (-12.2 - 4.44i)T^{2}
17 1+(0.826+1.43i)T+(8.514.7i)T2 1 + (-0.826 + 1.43i)T + (-8.5 - 14.7i)T^{2}
19 1+(1.292.24i)T+(9.5+16.4i)T2 1 + (-1.29 - 2.24i)T + (-9.5 + 16.4i)T^{2}
23 1+(4.18+1.52i)T+(17.614.7i)T2 1 + (-4.18 + 1.52i)T + (17.6 - 14.7i)T^{2}
29 1+(1.49+8.45i)T+(27.2+9.91i)T2 1 + (1.49 + 8.45i)T + (-27.2 + 9.91i)T^{2}
31 1+(6.062.20i)T+(23.719.9i)T2 1 + (6.06 - 2.20i)T + (23.7 - 19.9i)T^{2}
37 1+(2+3.46i)T+(18.532.0i)T2 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2}
41 1+(1.12+6.36i)T+(38.514.0i)T2 1 + (-1.12 + 6.36i)T + (-38.5 - 14.0i)T^{2}
43 1+(0.4500.378i)T+(7.4642.3i)T2 1 + (0.450 - 0.378i)T + (7.46 - 42.3i)T^{2}
47 1+(4.75+1.73i)T+(36.0+30.2i)T2 1 + (4.75 + 1.73i)T + (36.0 + 30.2i)T^{2}
53 16.82T+53T2 1 - 6.82T + 53T^{2}
59 1+(3.98+3.34i)T+(10.2+58.1i)T2 1 + (3.98 + 3.34i)T + (10.2 + 58.1i)T^{2}
61 1+(10.8+3.93i)T+(46.7+39.2i)T2 1 + (10.8 + 3.93i)T + (46.7 + 39.2i)T^{2}
67 1+(0.7744.39i)T+(62.922.9i)T2 1 + (0.774 - 4.39i)T + (-62.9 - 22.9i)T^{2}
71 1+(5.369.30i)T+(35.561.4i)T2 1 + (5.36 - 9.30i)T + (-35.5 - 61.4i)T^{2}
73 1+(3.866.69i)T+(36.5+63.2i)T2 1 + (-3.86 - 6.69i)T + (-36.5 + 63.2i)T^{2}
79 1+(0.0837+0.475i)T+(74.2+27.0i)T2 1 + (0.0837 + 0.475i)T + (-74.2 + 27.0i)T^{2}
83 1+(1.458.26i)T+(77.9+28.3i)T2 1 + (-1.45 - 8.26i)T + (-77.9 + 28.3i)T^{2}
89 1+(6.56+11.3i)T+(44.5+77.0i)T2 1 + (6.56 + 11.3i)T + (-44.5 + 77.0i)T^{2}
97 1+(12.0+10.1i)T+(16.895.5i)T2 1 + (-12.0 + 10.1i)T + (16.8 - 95.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.64490988789608411117164272631, −11.00970446222121744802497820541, −9.962466408781774087529006805449, −9.287797109024783468792359933405, −8.470322369710060792398018905120, −7.24483173864364016964988217197, −5.64698137664089888496263871125, −4.40200372634762482763585610349, −3.33027061387772200000394541528, −2.02600829523625448412132962464, 1.40202267496782222944332189169, 3.23016217992112470000019674400, 4.86581299157743409332985341204, 6.05576889320444128321332552137, 7.13157446775848738263547794286, 7.86547872363994154166795798962, 8.922183599886993345332464540376, 9.559018872723210795651183712645, 10.88870956749795405660416151538, 12.22281388126373103034615810529

Graph of the ZZ-function along the critical line