Properties

Label 2-270-27.13-c1-0-5
Degree $2$
Conductor $270$
Sign $0.973 - 0.230i$
Analytic cond. $2.15596$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)2-s + (1.11 + 1.32i)3-s + (−0.939 + 0.342i)4-s + (0.766 + 0.642i)5-s + (1.11 − 1.32i)6-s + (0.652 + 0.237i)7-s + (0.5 + 0.866i)8-s + (−0.520 + 2.95i)9-s + (0.5 − 0.866i)10-s + (1.62 − 1.36i)11-s + (−1.49 − 0.866i)12-s + (−0.532 + 3.01i)13-s + (0.120 − 0.684i)14-s + 1.73i·15-s + (0.766 − 0.642i)16-s + (0.826 − 1.43i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (0.642 + 0.766i)3-s + (−0.469 + 0.171i)4-s + (0.342 + 0.287i)5-s + (0.454 − 0.541i)6-s + (0.246 + 0.0897i)7-s + (0.176 + 0.306i)8-s + (−0.173 + 0.984i)9-s + (0.158 − 0.273i)10-s + (0.489 − 0.410i)11-s + (−0.433 − 0.249i)12-s + (−0.147 + 0.836i)13-s + (0.0322 − 0.182i)14-s + 0.447i·15-s + (0.191 − 0.160i)16-s + (0.200 − 0.347i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $0.973 - 0.230i$
Analytic conductor: \(2.15596\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1/2),\ 0.973 - 0.230i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.48561 + 0.173643i\)
\(L(\frac12)\) \(\approx\) \(1.48561 + 0.173643i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.173 + 0.984i)T \)
3 \( 1 + (-1.11 - 1.32i)T \)
5 \( 1 + (-0.766 - 0.642i)T \)
good7 \( 1 + (-0.652 - 0.237i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-1.62 + 1.36i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.532 - 3.01i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-0.826 + 1.43i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.29 - 2.24i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-4.18 + 1.52i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.49 + 8.45i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (6.06 - 2.20i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.12 + 6.36i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (0.450 - 0.378i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (4.75 + 1.73i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 6.82T + 53T^{2} \)
59 \( 1 + (3.98 + 3.34i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (10.8 + 3.93i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (0.774 - 4.39i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (5.36 - 9.30i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-3.86 - 6.69i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.0837 + 0.475i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (-1.45 - 8.26i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (6.56 + 11.3i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-12.0 + 10.1i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64490988789608411117164272631, −11.00970446222121744802497820541, −9.962466408781774087529006805449, −9.287797109024783468792359933405, −8.470322369710060792398018905120, −7.24483173864364016964988217197, −5.64698137664089888496263871125, −4.40200372634762482763585610349, −3.33027061387772200000394541528, −2.02600829523625448412132962464, 1.40202267496782222944332189169, 3.23016217992112470000019674400, 4.86581299157743409332985341204, 6.05576889320444128321332552137, 7.13157446775848738263547794286, 7.86547872363994154166795798962, 8.922183599886993345332464540376, 9.559018872723210795651183712645, 10.88870956749795405660416151538, 12.22281388126373103034615810529

Graph of the $Z$-function along the critical line