L(s) = 1 | + (0.173 − 0.984i)2-s + (−1.54 + 0.789i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (0.509 + 1.65i)6-s + (1.50 − 0.547i)7-s + (−0.5 + 0.866i)8-s + (1.75 − 2.43i)9-s + (−0.5 − 0.866i)10-s + (1.61 + 1.35i)11-s + (1.71 − 0.214i)12-s + (−1.06 − 6.02i)13-s + (−0.278 − 1.57i)14-s + (−0.673 + 1.59i)15-s + (0.766 + 0.642i)16-s + (−1.69 − 2.94i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (−0.890 + 0.455i)3-s + (−0.469 − 0.171i)4-s + (0.342 − 0.287i)5-s + (0.208 + 0.675i)6-s + (0.568 − 0.206i)7-s + (−0.176 + 0.306i)8-s + (0.584 − 0.811i)9-s + (−0.158 − 0.273i)10-s + (0.486 + 0.408i)11-s + (0.496 − 0.0619i)12-s + (−0.294 − 1.67i)13-s + (−0.0743 − 0.421i)14-s + (−0.173 + 0.412i)15-s + (0.191 + 0.160i)16-s + (−0.411 − 0.713i)17-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.139+0.990i)Λ(2−s)
Λ(s)=(=(270s/2ΓC(s+1/2)L(s)(0.139+0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.139+0.990i
|
Analytic conductor: |
2.15596 |
Root analytic conductor: |
1.46831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1/2), 0.139+0.990i)
|
Particular Values
L(1) |
≈ |
0.804182−0.699032i |
L(21) |
≈ |
0.804182−0.699032i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173+0.984i)T |
| 3 | 1+(1.54−0.789i)T |
| 5 | 1+(−0.766+0.642i)T |
good | 7 | 1+(−1.50+0.547i)T+(5.36−4.49i)T2 |
| 11 | 1+(−1.61−1.35i)T+(1.91+10.8i)T2 |
| 13 | 1+(1.06+6.02i)T+(−12.2+4.44i)T2 |
| 17 | 1+(1.69+2.94i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.99+5.19i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.67−0.973i)T+(17.6+14.7i)T2 |
| 29 | 1+(0.145−0.826i)T+(−27.2−9.91i)T2 |
| 31 | 1+(−3.99−1.45i)T+(23.7+19.9i)T2 |
| 37 | 1+(0.457+0.792i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.88−10.6i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−3.42−2.87i)T+(7.46+42.3i)T2 |
| 47 | 1+(9.02−3.28i)T+(36.0−30.2i)T2 |
| 53 | 1+10.1T+53T2 |
| 59 | 1+(−1.98+1.66i)T+(10.2−58.1i)T2 |
| 61 | 1+(−7.40+2.69i)T+(46.7−39.2i)T2 |
| 67 | 1+(1.35+7.65i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−2.95−5.12i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−5.58+9.67i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.55−14.5i)T+(−74.2−27.0i)T2 |
| 83 | 1+(1.27−7.23i)T+(−77.9−28.3i)T2 |
| 89 | 1+(−6.60+11.4i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−8.13−6.82i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47214093733221175657055707764, −10.98895511370740700754709223714, −9.889785465682975688064960786355, −9.309470678077910702248416516775, −7.86397946064906322353791653833, −6.52438795644776292444955963349, −5.14327868669293424975586907663, −4.70961125774817408239616530748, −3.04564909267897238727864894653, −0.997088449139598775816049075527,
1.77552548845791663131780511744, 4.09539170206211678341421287456, 5.25342565680344954880152961098, 6.25964328373057205479951166033, 6.93661269834803475703183855180, 8.062079373389212385244354046133, 9.166242459017686393668138507052, 10.30664620891472841413794818479, 11.44011836942759950746852108138, 12.00695785301642787122047407511