Properties

Label 2-270-27.25-c1-0-5
Degree $2$
Conductor $270$
Sign $0.139 + 0.990i$
Analytic cond. $2.15596$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.173 − 0.984i)2-s + (−1.54 + 0.789i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (0.509 + 1.65i)6-s + (1.50 − 0.547i)7-s + (−0.5 + 0.866i)8-s + (1.75 − 2.43i)9-s + (−0.5 − 0.866i)10-s + (1.61 + 1.35i)11-s + (1.71 − 0.214i)12-s + (−1.06 − 6.02i)13-s + (−0.278 − 1.57i)14-s + (−0.673 + 1.59i)15-s + (0.766 + 0.642i)16-s + (−1.69 − 2.94i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (−0.890 + 0.455i)3-s + (−0.469 − 0.171i)4-s + (0.342 − 0.287i)5-s + (0.208 + 0.675i)6-s + (0.568 − 0.206i)7-s + (−0.176 + 0.306i)8-s + (0.584 − 0.811i)9-s + (−0.158 − 0.273i)10-s + (0.486 + 0.408i)11-s + (0.496 − 0.0619i)12-s + (−0.294 − 1.67i)13-s + (−0.0743 − 0.421i)14-s + (−0.173 + 0.412i)15-s + (0.191 + 0.160i)16-s + (−0.411 − 0.713i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.139 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.139 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $0.139 + 0.990i$
Analytic conductor: \(2.15596\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1/2),\ 0.139 + 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.804182 - 0.699032i\)
\(L(\frac12)\) \(\approx\) \(0.804182 - 0.699032i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.173 + 0.984i)T \)
3 \( 1 + (1.54 - 0.789i)T \)
5 \( 1 + (-0.766 + 0.642i)T \)
good7 \( 1 + (-1.50 + 0.547i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (-1.61 - 1.35i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (1.06 + 6.02i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (1.69 + 2.94i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.99 + 5.19i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.67 - 0.973i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (0.145 - 0.826i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-3.99 - 1.45i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (0.457 + 0.792i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.88 - 10.6i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-3.42 - 2.87i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (9.02 - 3.28i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 + 10.1T + 53T^{2} \)
59 \( 1 + (-1.98 + 1.66i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-7.40 + 2.69i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (1.35 + 7.65i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (-2.95 - 5.12i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-5.58 + 9.67i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2.55 - 14.5i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (1.27 - 7.23i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (-6.60 + 11.4i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-8.13 - 6.82i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.47214093733221175657055707764, −10.98895511370740700754709223714, −9.889785465682975688064960786355, −9.309470678077910702248416516775, −7.86397946064906322353791653833, −6.52438795644776292444955963349, −5.14327868669293424975586907663, −4.70961125774817408239616530748, −3.04564909267897238727864894653, −0.997088449139598775816049075527, 1.77552548845791663131780511744, 4.09539170206211678341421287456, 5.25342565680344954880152961098, 6.25964328373057205479951166033, 6.93661269834803475703183855180, 8.062079373389212385244354046133, 9.166242459017686393668138507052, 10.30664620891472841413794818479, 11.44011836942759950746852108138, 12.00695785301642787122047407511

Graph of the $Z$-function along the critical line