L(s) = 1 | + 4·4-s − 12·5-s + 12·16-s + 12·17-s − 12·19-s − 48·20-s − 60·23-s + 66·25-s − 68·31-s + 240·47-s + 8·49-s − 204·53-s − 196·61-s + 32·64-s + 48·68-s − 48·76-s + 180·79-s − 144·80-s − 108·83-s − 144·85-s − 240·92-s + 144·95-s + 264·100-s + 144·107-s − 76·109-s − 48·113-s + 720·115-s + ⋯ |
L(s) = 1 | + 4-s − 2.39·5-s + 3/4·16-s + 0.705·17-s − 0.631·19-s − 2.39·20-s − 2.60·23-s + 2.63·25-s − 2.19·31-s + 5.10·47-s + 8/49·49-s − 3.84·53-s − 3.21·61-s + 1/2·64-s + 0.705·68-s − 0.631·76-s + 2.27·79-s − 9/5·80-s − 1.30·83-s − 1.69·85-s − 2.60·92-s + 1.51·95-s + 2.63·100-s + 1.34·107-s − 0.697·109-s − 0.424·113-s + 6.26·115-s + ⋯ |
Λ(s)=(=((24⋅312⋅54)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((24⋅312⋅54)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
2929.51 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅312⋅54, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.003093119092 |
L(21) |
≈ |
0.003093119092 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1−pT2)2 |
| 3 | | 1 |
| 5 | D4 | 1+12T+78T2+12p2T3+p4T4 |
good | 7 | C22≀C2 | 1−8T2−3894T4−8p4T6+p8T8 |
| 11 | C22≀C2 | 1−96T2+29786T4−96p4T6+p8T8 |
| 13 | C22≀C2 | 1−352T2+71898T4−352p4T6+p8T8 |
| 17 | D4 | (1−6T+489T2−6p2T3+p4T4)2 |
| 19 | D4 | (1+6T+713T2+6p2T3+p4T4)2 |
| 23 | D4 | (1+30T+891T2+30p2T3+p4T4)2 |
| 29 | C22≀C2 | 1−1096T2+1242474T4−1096p4T6+p8T8 |
| 31 | D4 | (1+34T+1761T2+34p2T3+p4T4)2 |
| 37 | C22≀C2 | 1−68T2−1268634T4−68p4T6+p8T8 |
| 41 | C22≀C2 | 1−5352T2+12407498T4−5352p4T6+p8T8 |
| 43 | C22≀C2 | 1−5672T2+14203050T4−5672p4T6+p8T8 |
| 47 | D4 | (1−120T+7626T2−120p2T3+p4T4)2 |
| 53 | D4 | (1+102T+8057T2+102p2T3+p4T4)2 |
| 59 | C22≀C2 | 1−10848T2+53616410T4−10848p4T6+p8T8 |
| 61 | D4 | (1+98T+8691T2+98p2T3+p4T4)2 |
| 67 | C22≀C2 | 1+6508T2+32310150T4+6508p4T6+p8T8 |
| 71 | C22≀C2 | 1−4288T2+45932730T4−4288p4T6+p8T8 |
| 73 | C22≀C2 | 1−13280T2+84777594T4−13280p4T6+p8T8 |
| 79 | D4 | (1−90T+6569T2−90p2T3+p4T4)2 |
| 83 | D4 | (1+54T+7779T2+54p2T3+p4T4)2 |
| 89 | C22≀C2 | 1−8136T2+91108874T4−8136p4T6+p8T8 |
| 97 | C22≀C2 | 1−19172T2+267913158T4−19172p4T6+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.417304005703146287284569980597, −8.062347681090796004110683855964, −7.72587265447779194131888066790, −7.70160775134969670698516823934, −7.51181083065864069572447934547, −7.35781161800555583840081507828, −7.05306337822045578066539765849, −6.61995464469389639668984929066, −6.23497802634086679275257256508, −6.18683368950351144786000148334, −5.81820864562338701314150277122, −5.47586346339973710203501027583, −5.35918875587960436062511752831, −4.55627242451186463850779747897, −4.49266772781826075664787255832, −4.19778619062035900273620195074, −3.94615722225874517332502935570, −3.46828571321495591781688823344, −3.42304134135874615096236568517, −3.03322616900163626894039551733, −2.39408445534723344321305199832, −2.09405665828087729871698837057, −1.65220395114889609306075717394, −0.963257331480092248079427387955, −0.01546708143175349743667653317,
0.01546708143175349743667653317, 0.963257331480092248079427387955, 1.65220395114889609306075717394, 2.09405665828087729871698837057, 2.39408445534723344321305199832, 3.03322616900163626894039551733, 3.42304134135874615096236568517, 3.46828571321495591781688823344, 3.94615722225874517332502935570, 4.19778619062035900273620195074, 4.49266772781826075664787255832, 4.55627242451186463850779747897, 5.35918875587960436062511752831, 5.47586346339973710203501027583, 5.81820864562338701314150277122, 6.18683368950351144786000148334, 6.23497802634086679275257256508, 6.61995464469389639668984929066, 7.05306337822045578066539765849, 7.35781161800555583840081507828, 7.51181083065864069572447934547, 7.70160775134969670698516823934, 7.72587265447779194131888066790, 8.062347681090796004110683855964, 8.417304005703146287284569980597