L(s) = 1 | + (−1 + i)2-s − 2i·4-s + (3.47 − 3.59i)5-s + (6.91 − 6.91i)7-s + (2 + 2i)8-s + (0.118 + 7.07i)10-s − 17.4·11-s + (−10.0 − 10.0i)13-s + 13.8i·14-s − 4·16-s + (−9.74 + 9.74i)17-s − 20.5i·19-s + (−7.18 − 6.95i)20-s + (17.4 − 17.4i)22-s + (0.673 + 0.673i)23-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s − 0.5i·4-s + (0.695 − 0.718i)5-s + (0.987 − 0.987i)7-s + (0.250 + 0.250i)8-s + (0.0118 + 0.707i)10-s − 1.58·11-s + (−0.774 − 0.774i)13-s + 0.987i·14-s − 0.250·16-s + (−0.573 + 0.573i)17-s − 1.07i·19-s + (−0.359 − 0.347i)20-s + (0.792 − 0.792i)22-s + (0.0292 + 0.0292i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.913934 - 0.710978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.913934 - 0.710978i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-3.47 + 3.59i)T \) |
good | 7 | \( 1 + (-6.91 + 6.91i)T - 49iT^{2} \) |
| 11 | \( 1 + 17.4T + 121T^{2} \) |
| 13 | \( 1 + (10.0 + 10.0i)T + 169iT^{2} \) |
| 17 | \( 1 + (9.74 - 9.74i)T - 289iT^{2} \) |
| 19 | \( 1 + 20.5iT - 361T^{2} \) |
| 23 | \( 1 + (-0.673 - 0.673i)T + 529iT^{2} \) |
| 29 | \( 1 + 16.6iT - 841T^{2} \) |
| 31 | \( 1 - 55.2T + 961T^{2} \) |
| 37 | \( 1 + (34.9 - 34.9i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 54.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + (3.08 + 3.08i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (5.65 - 5.65i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (45.4 + 45.4i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 94.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 54.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-33.3 + 33.3i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 71.8T + 5.04e3T^{2} \) |
| 73 | \( 1 + (10.1 + 10.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 105. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-86.4 - 86.4i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 12.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (40.9 - 40.9i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16910654564727674061402906936, −10.38905660546738026634482900131, −9.682596561215100468662802093073, −8.264418421227376663341561361376, −7.911543014078947000074152194644, −6.63058814484396951331323196951, −5.21163872928654980305866265414, −4.69657934892309397250991694702, −2.34437271974939728226819702891, −0.67161685326983419943729563936,
2.02281418403474007643836066484, 2.74639128598358044864235028200, 4.75543939025247428031016259734, 5.77841873597623537976064177470, 7.19573946465265657051786632460, 8.132900480789382347325073459927, 9.141672188804527126178231298312, 10.10985726684470504058584522381, 10.85548441629895627011224137279, 11.75491116225618316621920417347