L(s) = 1 | + (−1 + i)2-s − 2i·4-s + (3.47 − 3.59i)5-s + (6.91 − 6.91i)7-s + (2 + 2i)8-s + (0.118 + 7.07i)10-s − 17.4·11-s + (−10.0 − 10.0i)13-s + 13.8i·14-s − 4·16-s + (−9.74 + 9.74i)17-s − 20.5i·19-s + (−7.18 − 6.95i)20-s + (17.4 − 17.4i)22-s + (0.673 + 0.673i)23-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s − 0.5i·4-s + (0.695 − 0.718i)5-s + (0.987 − 0.987i)7-s + (0.250 + 0.250i)8-s + (0.0118 + 0.707i)10-s − 1.58·11-s + (−0.774 − 0.774i)13-s + 0.987i·14-s − 0.250·16-s + (−0.573 + 0.573i)17-s − 1.07i·19-s + (−0.359 − 0.347i)20-s + (0.792 − 0.792i)22-s + (0.0292 + 0.0292i)23-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.245+0.969i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(0.245+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.245+0.969i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), 0.245+0.969i)
|
Particular Values
L(23) |
≈ |
0.913934−0.710978i |
L(21) |
≈ |
0.913934−0.710978i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 3 | 1 |
| 5 | 1+(−3.47+3.59i)T |
good | 7 | 1+(−6.91+6.91i)T−49iT2 |
| 11 | 1+17.4T+121T2 |
| 13 | 1+(10.0+10.0i)T+169iT2 |
| 17 | 1+(9.74−9.74i)T−289iT2 |
| 19 | 1+20.5iT−361T2 |
| 23 | 1+(−0.673−0.673i)T+529iT2 |
| 29 | 1+16.6iT−841T2 |
| 31 | 1−55.2T+961T2 |
| 37 | 1+(34.9−34.9i)T−1.36e3iT2 |
| 41 | 1−54.1T+1.68e3T2 |
| 43 | 1+(3.08+3.08i)T+1.84e3iT2 |
| 47 | 1+(5.65−5.65i)T−2.20e3iT2 |
| 53 | 1+(45.4+45.4i)T+2.80e3iT2 |
| 59 | 1+94.1iT−3.48e3T2 |
| 61 | 1−54.1T+3.72e3T2 |
| 67 | 1+(−33.3+33.3i)T−4.48e3iT2 |
| 71 | 1−71.8T+5.04e3T2 |
| 73 | 1+(10.1+10.1i)T+5.32e3iT2 |
| 79 | 1−105.iT−6.24e3T2 |
| 83 | 1+(−86.4−86.4i)T+6.88e3iT2 |
| 89 | 1+12.4iT−7.92e3T2 |
| 97 | 1+(40.9−40.9i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16910654564727674061402906936, −10.38905660546738026634482900131, −9.682596561215100468662802093073, −8.264418421227376663341561361376, −7.911543014078947000074152194644, −6.63058814484396951331323196951, −5.21163872928654980305866265414, −4.69657934892309397250991694702, −2.34437271974939728226819702891, −0.67161685326983419943729563936,
2.02281418403474007643836066484, 2.74639128598358044864235028200, 4.75543939025247428031016259734, 5.77841873597623537976064177470, 7.19573946465265657051786632460, 8.132900480789382347325073459927, 9.141672188804527126178231298312, 10.10985726684470504058584522381, 10.85548441629895627011224137279, 11.75491116225618316621920417347