L(s) = 1 | + (1 + i)2-s + 2i·4-s + (−4.62 − 1.89i)5-s + (−6.13 − 6.13i)7-s + (−2 + 2i)8-s + (−2.73 − 6.52i)10-s + 8.32·11-s + (14.2 − 14.2i)13-s − 12.2i·14-s − 4·16-s + (−21.9 − 21.9i)17-s − 30.5i·19-s + (3.79 − 9.25i)20-s + (8.32 + 8.32i)22-s + (−17.1 + 17.1i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (−0.925 − 0.379i)5-s + (−0.876 − 0.876i)7-s + (−0.250 + 0.250i)8-s + (−0.273 − 0.652i)10-s + 0.757·11-s + (1.09 − 1.09i)13-s − 0.876i·14-s − 0.250·16-s + (−1.29 − 1.29i)17-s − 1.61i·19-s + (0.189 − 0.462i)20-s + (0.378 + 0.378i)22-s + (−0.744 + 0.744i)23-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(0.163+0.986i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(0.163+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
0.163+0.986i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(217,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), 0.163+0.986i)
|
Particular Values
L(23) |
≈ |
0.860870−0.729568i |
L(21) |
≈ |
0.860870−0.729568i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 3 | 1 |
| 5 | 1+(4.62+1.89i)T |
good | 7 | 1+(6.13+6.13i)T+49iT2 |
| 11 | 1−8.32T+121T2 |
| 13 | 1+(−14.2+14.2i)T−169iT2 |
| 17 | 1+(21.9+21.9i)T+289iT2 |
| 19 | 1+30.5iT−361T2 |
| 23 | 1+(17.1−17.1i)T−529iT2 |
| 29 | 1−37.8iT−841T2 |
| 31 | 1+13.8T+961T2 |
| 37 | 1+(27.6+27.6i)T+1.36e3iT2 |
| 41 | 1+19.1T+1.68e3T2 |
| 43 | 1+(−13.8+13.8i)T−1.84e3iT2 |
| 47 | 1+(−3.65−3.65i)T+2.20e3iT2 |
| 53 | 1+(−13.0+13.0i)T−2.80e3iT2 |
| 59 | 1+18.2iT−3.48e3T2 |
| 61 | 1+11.2T+3.72e3T2 |
| 67 | 1+(−79.5−79.5i)T+4.48e3iT2 |
| 71 | 1−15.3T+5.04e3T2 |
| 73 | 1+(−34.5+34.5i)T−5.32e3iT2 |
| 79 | 1−80.8iT−6.24e3T2 |
| 83 | 1+(−12.4+12.4i)T−6.88e3iT2 |
| 89 | 1+0.375iT−7.92e3T2 |
| 97 | 1+(37.9+37.9i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49399276652225040518292736596, −10.83071477882756787958546343270, −9.318738735043460905227933682691, −8.547229381907031056131467167478, −7.22564927868087526383064206689, −6.76171757438334057167039629699, −5.26546511015823932722964130615, −4.07643847695168054145102059060, −3.25394227171755998090796040680, −0.48328298737525934096403058654,
1.99113156340892331599633803380, 3.62203056379191333528496468407, 4.18644401056445974935941764368, 6.18083600477869917402805286938, 6.46864443441938883095688482267, 8.245293521856778029784645794258, 9.035346082067799787486270679235, 10.21470343905843880546990182553, 11.18965799497690072790544971928, 11.98018112764859970659944272215