L(s) = 1 | + (1 + i)2-s + 2i·4-s + (−4.62 − 1.89i)5-s + (−6.13 − 6.13i)7-s + (−2 + 2i)8-s + (−2.73 − 6.52i)10-s + 8.32·11-s + (14.2 − 14.2i)13-s − 12.2i·14-s − 4·16-s + (−21.9 − 21.9i)17-s − 30.5i·19-s + (3.79 − 9.25i)20-s + (8.32 + 8.32i)22-s + (−17.1 + 17.1i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (−0.925 − 0.379i)5-s + (−0.876 − 0.876i)7-s + (−0.250 + 0.250i)8-s + (−0.273 − 0.652i)10-s + 0.757·11-s + (1.09 − 1.09i)13-s − 0.876i·14-s − 0.250·16-s + (−1.29 − 1.29i)17-s − 1.61i·19-s + (0.189 − 0.462i)20-s + (0.378 + 0.378i)22-s + (−0.744 + 0.744i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.163 + 0.986i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.163 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.860870 - 0.729568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.860870 - 0.729568i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (4.62 + 1.89i)T \) |
good | 7 | \( 1 + (6.13 + 6.13i)T + 49iT^{2} \) |
| 11 | \( 1 - 8.32T + 121T^{2} \) |
| 13 | \( 1 + (-14.2 + 14.2i)T - 169iT^{2} \) |
| 17 | \( 1 + (21.9 + 21.9i)T + 289iT^{2} \) |
| 19 | \( 1 + 30.5iT - 361T^{2} \) |
| 23 | \( 1 + (17.1 - 17.1i)T - 529iT^{2} \) |
| 29 | \( 1 - 37.8iT - 841T^{2} \) |
| 31 | \( 1 + 13.8T + 961T^{2} \) |
| 37 | \( 1 + (27.6 + 27.6i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 19.1T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-13.8 + 13.8i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-3.65 - 3.65i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-13.0 + 13.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 18.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 11.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-79.5 - 79.5i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 15.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-34.5 + 34.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 80.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-12.4 + 12.4i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 0.375iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (37.9 + 37.9i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49399276652225040518292736596, −10.83071477882756787958546343270, −9.318738735043460905227933682691, −8.547229381907031056131467167478, −7.22564927868087526383064206689, −6.76171757438334057167039629699, −5.26546511015823932722964130615, −4.07643847695168054145102059060, −3.25394227171755998090796040680, −0.48328298737525934096403058654,
1.99113156340892331599633803380, 3.62203056379191333528496468407, 4.18644401056445974935941764368, 6.18083600477869917402805286938, 6.46864443441938883095688482267, 8.245293521856778029784645794258, 9.035346082067799787486270679235, 10.21470343905843880546990182553, 11.18965799497690072790544971928, 11.98018112764859970659944272215