L(s) = 1 | + (1 + i)2-s + 2i·4-s + (4.07 + 2.89i)5-s + (1.68 + 1.68i)7-s + (−2 + 2i)8-s + (1.18 + 6.97i)10-s + 6.57·11-s + (−3.12 + 3.12i)13-s + 3.37i·14-s − 4·16-s + (−4.54 − 4.54i)17-s + 27.6i·19-s + (−5.79 + 8.15i)20-s + (6.57 + 6.57i)22-s + (13.7 − 13.7i)23-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (0.815 + 0.579i)5-s + (0.241 + 0.241i)7-s + (−0.250 + 0.250i)8-s + (0.118 + 0.697i)10-s + 0.597·11-s + (−0.240 + 0.240i)13-s + 0.241i·14-s − 0.250·16-s + (−0.267 − 0.267i)17-s + 1.45i·19-s + (−0.289 + 0.407i)20-s + (0.298 + 0.298i)22-s + (0.598 − 0.598i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0640 - 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0640 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.73149 + 1.62398i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73149 + 1.62398i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-4.07 - 2.89i)T \) |
good | 7 | \( 1 + (-1.68 - 1.68i)T + 49iT^{2} \) |
| 11 | \( 1 - 6.57T + 121T^{2} \) |
| 13 | \( 1 + (3.12 - 3.12i)T - 169iT^{2} \) |
| 17 | \( 1 + (4.54 + 4.54i)T + 289iT^{2} \) |
| 19 | \( 1 - 27.6iT - 361T^{2} \) |
| 23 | \( 1 + (-13.7 + 13.7i)T - 529iT^{2} \) |
| 29 | \( 1 + 10.9iT - 841T^{2} \) |
| 31 | \( 1 + 36.4T + 961T^{2} \) |
| 37 | \( 1 + (-43.7 - 43.7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 44.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-2.47 + 2.47i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (62.4 + 62.4i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-29.0 + 29.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 41.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 42.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + (67.5 + 67.5i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 47.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-74.6 + 74.6i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 78.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-60.7 + 60.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 165. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (86.6 + 86.6i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00794468341653283773841403926, −11.08888873901943947549532048990, −9.963265041699846009162459678723, −9.058592898015461302344271532801, −7.87980946331897309372401293452, −6.74605802370465633351659993238, −5.99893421934297209318266331829, −4.88492494782244520693807453934, −3.48038736584617824823912352944, −2.01690984077805322143531039911,
1.15590725822500198273414872454, 2.59915183235057420001729411581, 4.20761931143158167274027438257, 5.18633436167263272505344243061, 6.21983241766879191200862818854, 7.44202603578085256840308415098, 9.007541719730084408540429519737, 9.467329767062754079756331186491, 10.74905171824715883606056805481, 11.39213193302233657209898666090