L(s) = 1 | + (0.366 + 1.36i)2-s + (−1.73 + i)4-s + (−1.44 − 4.78i)5-s + (1.61 + 6.01i)7-s + (−2 − 1.99i)8-s + (6.00 − 3.73i)10-s + (−5.39 + 9.34i)11-s + (−6.33 + 23.6i)13-s + (−7.63 + 4.40i)14-s + (1.99 − 3.46i)16-s + (11.1 − 11.1i)17-s + 20.2i·19-s + (7.29 + 6.83i)20-s + (−14.7 − 3.94i)22-s + (−7.01 + 26.1i)23-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (−0.433 + 0.250i)4-s + (−0.289 − 0.957i)5-s + (0.230 + 0.859i)7-s + (−0.250 − 0.249i)8-s + (0.600 − 0.373i)10-s + (−0.490 + 0.849i)11-s + (−0.487 + 1.81i)13-s + (−0.545 + 0.314i)14-s + (0.124 − 0.216i)16-s + (0.656 − 0.656i)17-s + 1.06i·19-s + (0.364 + 0.341i)20-s + (−0.669 − 0.179i)22-s + (−0.305 + 1.13i)23-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.747−0.664i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(−0.747−0.664i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.747−0.664i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), −0.747−0.664i)
|
Particular Values
L(23) |
≈ |
0.413343+1.08683i |
L(21) |
≈ |
0.413343+1.08683i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.366−1.36i)T |
| 3 | 1 |
| 5 | 1+(1.44+4.78i)T |
good | 7 | 1+(−1.61−6.01i)T+(−42.4+24.5i)T2 |
| 11 | 1+(5.39−9.34i)T+(−60.5−104.i)T2 |
| 13 | 1+(6.33−23.6i)T+(−146.−84.5i)T2 |
| 17 | 1+(−11.1+11.1i)T−289iT2 |
| 19 | 1−20.2iT−361T2 |
| 23 | 1+(7.01−26.1i)T+(−458.−264.5i)T2 |
| 29 | 1+(17.5+10.1i)T+(420.5+728.i)T2 |
| 31 | 1+(5.98+10.3i)T+(−480.5+832.i)T2 |
| 37 | 1+(−40.1+40.1i)T−1.36e3iT2 |
| 41 | 1+(−5.77−10.0i)T+(−840.5+1.45e3i)T2 |
| 43 | 1+(18.9−5.07i)T+(1.60e3−924.5i)T2 |
| 47 | 1+(−4.89−18.2i)T+(−1.91e3+1.10e3i)T2 |
| 53 | 1+(31.5+31.5i)T+2.80e3iT2 |
| 59 | 1+(49.2−28.4i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(15.9−27.5i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−79.8−21.3i)T+(3.88e3+2.24e3i)T2 |
| 71 | 1−22.4T+5.04e3T2 |
| 73 | 1+(−11.7−11.7i)T+5.32e3iT2 |
| 79 | 1+(−31.0−17.9i)T+(3.12e3+5.40e3i)T2 |
| 83 | 1+(−115.+30.9i)T+(5.96e3−3.44e3i)T2 |
| 89 | 1−12.2iT−7.92e3T2 |
| 97 | 1+(21.4+80.1i)T+(−8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10194663290119826769793118504, −11.55071238317207125851411281232, −9.620961689204282345416313918025, −9.280523934718833491406007439873, −8.025737549422648949701405484786, −7.33006333750385457696433177436, −5.87189455446492316598227274974, −4.99846624902091624430971444740, −4.02212183553168022052034100610, −1.94902672512416685216184452865,
0.55368832144223899003086666249, 2.72954624807512661199148186853, 3.58256881649687878036469093883, 5.00523345703243837724520209654, 6.23926068056757842523793235302, 7.58058769544714976393541803739, 8.269590628655325899073361737243, 9.867278829720148609462592136878, 10.74665700473149163727435393732, 10.91478541607051162053823335177