L(s) = 1 | + (1.36 + 0.366i)2-s + (1.73 + i)4-s + (−4.54 + 2.07i)5-s + (−9.78 − 2.62i)7-s + (1.99 + 2i)8-s + (−6.97 + 1.16i)10-s + (8.11 + 14.0i)11-s + (−20.2 + 5.41i)13-s + (−12.4 − 7.16i)14-s + (1.99 + 3.46i)16-s + (−7.49 + 7.49i)17-s − 1.15i·19-s + (−9.95 − 0.954i)20-s + (5.93 + 22.1i)22-s + (−19.1 + 5.14i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.250i)4-s + (−0.909 + 0.415i)5-s + (−1.39 − 0.374i)7-s + (0.249 + 0.250i)8-s + (−0.697 + 0.116i)10-s + (0.737 + 1.27i)11-s + (−1.55 + 0.416i)13-s + (−0.886 − 0.511i)14-s + (0.124 + 0.216i)16-s + (−0.441 + 0.441i)17-s − 0.0607i·19-s + (−0.497 − 0.0477i)20-s + (0.269 + 1.00i)22-s + (−0.834 + 0.223i)23-s + ⋯ |
Λ(s)=(=(270s/2ΓC(s)L(s)(−0.900−0.433i)Λ(3−s)
Λ(s)=(=(270s/2ΓC(s+1)L(s)(−0.900−0.433i)Λ(1−s)
Degree: |
2 |
Conductor: |
270
= 2⋅33⋅5
|
Sign: |
−0.900−0.433i
|
Analytic conductor: |
7.35696 |
Root analytic conductor: |
2.71237 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ270(253,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 270, ( :1), −0.900−0.433i)
|
Particular Values
L(23) |
≈ |
0.189969+0.832269i |
L(21) |
≈ |
0.189969+0.832269i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.366i)T |
| 3 | 1 |
| 5 | 1+(4.54−2.07i)T |
good | 7 | 1+(9.78+2.62i)T+(42.4+24.5i)T2 |
| 11 | 1+(−8.11−14.0i)T+(−60.5+104.i)T2 |
| 13 | 1+(20.2−5.41i)T+(146.−84.5i)T2 |
| 17 | 1+(7.49−7.49i)T−289iT2 |
| 19 | 1+1.15iT−361T2 |
| 23 | 1+(19.1−5.14i)T+(458.−264.5i)T2 |
| 29 | 1+(−19.9+11.5i)T+(420.5−728.i)T2 |
| 31 | 1+(−2.50+4.34i)T+(−480.5−832.i)T2 |
| 37 | 1+(−33.0+33.0i)T−1.36e3iT2 |
| 41 | 1+(26.2−45.4i)T+(−840.5−1.45e3i)T2 |
| 43 | 1+(8.94−33.3i)T+(−1.60e3−924.5i)T2 |
| 47 | 1+(15.5+4.17i)T+(1.91e3+1.10e3i)T2 |
| 53 | 1+(−30.1−30.1i)T+2.80e3iT2 |
| 59 | 1+(−0.730−0.421i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(15.8+27.5i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(9.02+33.6i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1+1.68T+5.04e3T2 |
| 73 | 1+(−100.−100.i)T+5.32e3iT2 |
| 79 | 1+(9.01−5.20i)T+(3.12e3−5.40e3i)T2 |
| 83 | 1+(6.02−22.4i)T+(−5.96e3−3.44e3i)T2 |
| 89 | 1−102.iT−7.92e3T2 |
| 97 | 1+(21.8+5.85i)T+(8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.28988838025930420473715626979, −11.46319102363113564281520916679, −10.12083535147547913989649454072, −9.505437305079726069315476381636, −7.85256204569371295992875881715, −6.96471599725986176357750718078, −6.41621148623826071800359046283, −4.61190825078706272500793570273, −3.86241585160708553465462308696, −2.53170403077611751253859308608,
0.32539369701680413845902081507, 2.81362877975907162664079370679, 3.74091021313876944661419780509, 5.01068231733160198636148705975, 6.20513064143419320831689284074, 7.13167491622910228103454931999, 8.429043113949942195959399961161, 9.428951519551830840070332424365, 10.43486309191310895634421877723, 11.74077573756493056084059913390