L(s) = 1 | + (1.36 + 0.366i)2-s + (1.73 + i)4-s + (−4.54 + 2.07i)5-s + (−9.78 − 2.62i)7-s + (1.99 + 2i)8-s + (−6.97 + 1.16i)10-s + (8.11 + 14.0i)11-s + (−20.2 + 5.41i)13-s + (−12.4 − 7.16i)14-s + (1.99 + 3.46i)16-s + (−7.49 + 7.49i)17-s − 1.15i·19-s + (−9.95 − 0.954i)20-s + (5.93 + 22.1i)22-s + (−19.1 + 5.14i)23-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.433 + 0.250i)4-s + (−0.909 + 0.415i)5-s + (−1.39 − 0.374i)7-s + (0.249 + 0.250i)8-s + (−0.697 + 0.116i)10-s + (0.737 + 1.27i)11-s + (−1.55 + 0.416i)13-s + (−0.886 − 0.511i)14-s + (0.124 + 0.216i)16-s + (−0.441 + 0.441i)17-s − 0.0607i·19-s + (−0.497 − 0.0477i)20-s + (0.269 + 1.00i)22-s + (−0.834 + 0.223i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.433i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.900 - 0.433i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.189969 + 0.832269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.189969 + 0.832269i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.366i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (4.54 - 2.07i)T \) |
good | 7 | \( 1 + (9.78 + 2.62i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-8.11 - 14.0i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (20.2 - 5.41i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (7.49 - 7.49i)T - 289iT^{2} \) |
| 19 | \( 1 + 1.15iT - 361T^{2} \) |
| 23 | \( 1 + (19.1 - 5.14i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (-19.9 + 11.5i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-2.50 + 4.34i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-33.0 + 33.0i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (26.2 - 45.4i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (8.94 - 33.3i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (15.5 + 4.17i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-30.1 - 30.1i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-0.730 - 0.421i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (15.8 + 27.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (9.02 + 33.6i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 1.68T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-100. - 100. i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (9.01 - 5.20i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (6.02 - 22.4i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 102. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (21.8 + 5.85i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28988838025930420473715626979, −11.46319102363113564281520916679, −10.12083535147547913989649454072, −9.505437305079726069315476381636, −7.85256204569371295992875881715, −6.96471599725986176357750718078, −6.41621148623826071800359046283, −4.61190825078706272500793570273, −3.86241585160708553465462308696, −2.53170403077611751253859308608,
0.32539369701680413845902081507, 2.81362877975907162664079370679, 3.74091021313876944661419780509, 5.01068231733160198636148705975, 6.20513064143419320831689284074, 7.13167491622910228103454931999, 8.429043113949942195959399961161, 9.428951519551830840070332424365, 10.43486309191310895634421877723, 11.74077573756493056084059913390