L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.422 − 0.906i)3-s + (0.984 + 0.173i)4-s + (0.5 − 0.866i)6-s + (0.560 + 0.392i)7-s + (0.965 + 0.258i)8-s + (−0.642 − 0.766i)9-s + (0.573 − 0.819i)12-s + (0.524 + 0.439i)14-s + (0.939 + 0.342i)16-s + (−0.573 − 0.819i)18-s + (0.592 − 0.342i)21-s + (−0.199 − 0.284i)23-s + (0.642 − 0.766i)24-s + (−0.965 + 0.258i)27-s + (0.483 + 0.483i)28-s + ⋯ |
L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.422 − 0.906i)3-s + (0.984 + 0.173i)4-s + (0.5 − 0.866i)6-s + (0.560 + 0.392i)7-s + (0.965 + 0.258i)8-s + (−0.642 − 0.766i)9-s + (0.573 − 0.819i)12-s + (0.524 + 0.439i)14-s + (0.939 + 0.342i)16-s + (−0.573 − 0.819i)18-s + (0.592 − 0.342i)21-s + (−0.199 − 0.284i)23-s + (0.642 − 0.766i)24-s + (−0.965 + 0.258i)27-s + (0.483 + 0.483i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 + 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 + 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.757814708\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.757814708\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.996 - 0.0871i)T \) |
| 3 | \( 1 + (-0.422 + 0.906i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.560 - 0.392i)T + (0.342 + 0.939i)T^{2} \) |
| 11 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 13 | \( 1 + (0.984 - 0.173i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.199 + 0.284i)T + (-0.342 + 0.939i)T^{2} \) |
| 29 | \( 1 + (1.50 - 1.26i)T + (0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 37 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (0.826 - 0.984i)T + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (0.731 + 1.56i)T + (-0.642 + 0.766i)T^{2} \) |
| 47 | \( 1 + (-0.878 + 1.25i)T + (-0.342 - 0.939i)T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.326 - 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.28 + 0.112i)T + (0.984 - 0.173i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (0.133 - 1.52i)T + (-0.984 - 0.173i)T^{2} \) |
| 89 | \( 1 + (0.642 + 1.11i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.642 + 0.766i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.548641795500385332345095119113, −8.202677258512160889230585516291, −7.04501743411617800552510362328, −6.92976337982003637841915980402, −5.66350526126018542857815450556, −5.32329189986284556445632331175, −4.08320421530801451316925364150, −3.27432144532511703535870885137, −2.29015137318164710041831128273, −1.54737301774132153295091990903,
1.73006288381997480300862381656, 2.71421113240285438644760109942, 3.70161184413184259490678739798, 4.24929176231564620042439479832, 5.06461624157069535937422452383, 5.71821537405312765734417916364, 6.66200538018671417003450419465, 7.75250440272465322918617875480, 8.054375773608060400033783635337, 9.309296817579175321593277974393