L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.422 − 0.906i)3-s + (0.984 + 0.173i)4-s + (0.5 − 0.866i)6-s + (0.560 + 0.392i)7-s + (0.965 + 0.258i)8-s + (−0.642 − 0.766i)9-s + (0.573 − 0.819i)12-s + (0.524 + 0.439i)14-s + (0.939 + 0.342i)16-s + (−0.573 − 0.819i)18-s + (0.592 − 0.342i)21-s + (−0.199 − 0.284i)23-s + (0.642 − 0.766i)24-s + (−0.965 + 0.258i)27-s + (0.483 + 0.483i)28-s + ⋯ |
L(s) = 1 | + (0.996 + 0.0871i)2-s + (0.422 − 0.906i)3-s + (0.984 + 0.173i)4-s + (0.5 − 0.866i)6-s + (0.560 + 0.392i)7-s + (0.965 + 0.258i)8-s + (−0.642 − 0.766i)9-s + (0.573 − 0.819i)12-s + (0.524 + 0.439i)14-s + (0.939 + 0.342i)16-s + (−0.573 − 0.819i)18-s + (0.592 − 0.342i)21-s + (−0.199 − 0.284i)23-s + (0.642 − 0.766i)24-s + (−0.965 + 0.258i)27-s + (0.483 + 0.483i)28-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)(0.835+0.550i)Λ(1−s)
Λ(s)=(=(2700s/2ΓC(s)L(s)(0.835+0.550i)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
0.835+0.550i
|
Analytic conductor: |
1.34747 |
Root analytic conductor: |
1.16080 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(707,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :0), 0.835+0.550i)
|
Particular Values
L(21) |
≈ |
2.757814708 |
L(21) |
≈ |
2.757814708 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.996−0.0871i)T |
| 3 | 1+(−0.422+0.906i)T |
| 5 | 1 |
good | 7 | 1+(−0.560−0.392i)T+(0.342+0.939i)T2 |
| 11 | 1+(0.766+0.642i)T2 |
| 13 | 1+(0.984−0.173i)T2 |
| 17 | 1+(−0.866+0.5i)T2 |
| 19 | 1+(−0.5+0.866i)T2 |
| 23 | 1+(0.199+0.284i)T+(−0.342+0.939i)T2 |
| 29 | 1+(1.50−1.26i)T+(0.173−0.984i)T2 |
| 31 | 1+(0.939+0.342i)T2 |
| 37 | 1+(0.866−0.5i)T2 |
| 41 | 1+(0.826−0.984i)T+(−0.173−0.984i)T2 |
| 43 | 1+(0.731+1.56i)T+(−0.642+0.766i)T2 |
| 47 | 1+(−0.878+1.25i)T+(−0.342−0.939i)T2 |
| 53 | 1+iT2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(−0.326−1.85i)T+(−0.939+0.342i)T2 |
| 67 | 1+(−1.28+0.112i)T+(0.984−0.173i)T2 |
| 71 | 1+(−0.5−0.866i)T2 |
| 73 | 1+(0.866+0.5i)T2 |
| 79 | 1+(0.173−0.984i)T2 |
| 83 | 1+(0.133−1.52i)T+(−0.984−0.173i)T2 |
| 89 | 1+(0.642+1.11i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−0.642+0.766i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.548641795500385332345095119113, −8.202677258512160889230585516291, −7.04501743411617800552510362328, −6.92976337982003637841915980402, −5.66350526126018542857815450556, −5.32329189986284556445632331175, −4.08320421530801451316925364150, −3.27432144532511703535870885137, −2.29015137318164710041831128273, −1.54737301774132153295091990903,
1.73006288381997480300862381656, 2.71421113240285438644760109942, 3.70161184413184259490678739798, 4.24929176231564620042439479832, 5.06461624157069535937422452383, 5.71821537405312765734417916364, 6.66200538018671417003450419465, 7.75250440272465322918617875480, 8.054375773608060400033783635337, 9.309296817579175321593277974393