Properties

Label 2-2700-1.1-c1-0-6
Degree $2$
Conductor $2700$
Sign $1$
Analytic cond. $21.5596$
Root an. cond. $4.64323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3.16·11-s + 3·13-s − 6.32·17-s + 3·19-s + 3.16·23-s + 9.48·29-s − 2·31-s + 37-s − 3.16·41-s + 10·43-s + 6.32·47-s − 6·49-s + 9.48·53-s − 6.32·59-s − 61-s + 11·67-s + 9.48·71-s + 13·73-s − 3.16·77-s − 3·79-s − 15.8·83-s − 12.6·89-s + 3·91-s − 97-s − 6.32·101-s + 17·103-s + ⋯
L(s)  = 1  + 0.377·7-s − 0.953·11-s + 0.832·13-s − 1.53·17-s + 0.688·19-s + 0.659·23-s + 1.76·29-s − 0.359·31-s + 0.164·37-s − 0.493·41-s + 1.52·43-s + 0.922·47-s − 0.857·49-s + 1.30·53-s − 0.823·59-s − 0.128·61-s + 1.34·67-s + 1.12·71-s + 1.52·73-s − 0.360·77-s − 0.337·79-s − 1.73·83-s − 1.34·89-s + 0.314·91-s − 0.101·97-s − 0.629·101-s + 1.67·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2700\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(21.5596\)
Root analytic conductor: \(4.64323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.811596577\)
\(L(\frac12)\) \(\approx\) \(1.811596577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - T + 7T^{2} \)
11 \( 1 + 3.16T + 11T^{2} \)
13 \( 1 - 3T + 13T^{2} \)
17 \( 1 + 6.32T + 17T^{2} \)
19 \( 1 - 3T + 19T^{2} \)
23 \( 1 - 3.16T + 23T^{2} \)
29 \( 1 - 9.48T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 + 3.16T + 41T^{2} \)
43 \( 1 - 10T + 43T^{2} \)
47 \( 1 - 6.32T + 47T^{2} \)
53 \( 1 - 9.48T + 53T^{2} \)
59 \( 1 + 6.32T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 11T + 67T^{2} \)
71 \( 1 - 9.48T + 71T^{2} \)
73 \( 1 - 13T + 73T^{2} \)
79 \( 1 + 3T + 79T^{2} \)
83 \( 1 + 15.8T + 83T^{2} \)
89 \( 1 + 12.6T + 89T^{2} \)
97 \( 1 + T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.689848815504296789050183615408, −8.230421080046651274613856004843, −7.29959401194047710048636175017, −6.60857561933900694853055495297, −5.70533590991719826820879175240, −4.91267163175292655559474550861, −4.17038239174839053379935483334, −3.03905341807695889009133059205, −2.18504416477993028518539292159, −0.848800752208931077087787404391, 0.848800752208931077087787404391, 2.18504416477993028518539292159, 3.03905341807695889009133059205, 4.17038239174839053379935483334, 4.91267163175292655559474550861, 5.70533590991719826820879175240, 6.60857561933900694853055495297, 7.29959401194047710048636175017, 8.230421080046651274613856004843, 8.689848815504296789050183615408

Graph of the $Z$-function along the critical line