L(s) = 1 | + (2.05 + 3.55i)7-s + (−1.90 − 3.30i)11-s + (2.90 − 5.03i)13-s + 3.81·17-s − 1.81·19-s + (−1.05 + 1.81i)23-s + (−3.60 − 6.23i)29-s + (0.908 − 1.57i)31-s + 6.01·37-s + (5.50 − 9.54i)41-s + (2.90 + 5.03i)43-s + (−5.95 − 10.3i)47-s + (−4.90 + 8.50i)49-s + 4.20·53-s + (−2.10 + 3.63i)59-s + ⋯ |
L(s) = 1 | + (0.774 + 1.34i)7-s + (−0.575 − 0.996i)11-s + (0.806 − 1.39i)13-s + 0.925·17-s − 0.416·19-s + (−0.219 + 0.379i)23-s + (−0.668 − 1.15i)29-s + (0.163 − 0.282i)31-s + 0.989·37-s + (0.860 − 1.49i)41-s + (0.443 + 0.768i)43-s + (−0.869 − 1.50i)47-s + (−0.701 + 1.21i)49-s + 0.577·53-s + (−0.273 + 0.473i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.870 + 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.870 + 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.961237410\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.961237410\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-2.05 - 3.55i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.90 + 3.30i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.90 + 5.03i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.81T + 17T^{2} \) |
| 19 | \( 1 + 1.81T + 19T^{2} \) |
| 23 | \( 1 + (1.05 - 1.81i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.60 + 6.23i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.908 + 1.57i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.01T + 37T^{2} \) |
| 41 | \( 1 + (-5.50 + 9.54i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.90 - 5.03i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.95 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 4.20T + 53T^{2} \) |
| 59 | \( 1 + (2.10 - 3.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.50 - 2.61i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.85 + 3.21i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.01T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.94 - 3.37i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (-6.10 - 10.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.589761240929105085185838217709, −8.094880856036119935017263043591, −7.60293010147385441110510703474, −6.04335509777119053219477982486, −5.76217585547373646032717990970, −5.15660285007684722565239450521, −3.88140398122170733208044523213, −2.97418453764095580050426577866, −2.13820368815282990829090580382, −0.73997374928975439422391806316,
1.14228677956565121942267908361, 1.97303616622529500376890638882, 3.35328980435639262152663000727, 4.40400062566553948362490460495, 4.62102914130976964138630798189, 5.86844958813734350532571810431, 6.77464528671963280945970548366, 7.43354777361671005951964196513, 7.978359864583863095768875350146, 8.874289716000017091686042749068