L(s) = 1 | − 7.15·7-s + 5.06i·11-s + 3.12·13-s − 8.72i·17-s + 20.1·19-s − 14.7i·23-s + 39.7i·29-s − 39.3·31-s − 34.8·37-s − 13.2i·41-s + 66.6·43-s + 16.9i·47-s + 2.18·49-s − 4.62i·53-s + 25.7i·59-s + ⋯ |
L(s) = 1 | − 1.02·7-s + 0.460i·11-s + 0.240·13-s − 0.513i·17-s + 1.06·19-s − 0.640i·23-s + 1.37i·29-s − 1.27·31-s − 0.942·37-s − 0.323i·41-s + 1.54·43-s + 0.359i·47-s + 0.0445·49-s − 0.0873i·53-s + 0.436i·59-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)iΛ(3−s)
Λ(s)=(=(2700s/2ΓC(s+1)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
i
|
Analytic conductor: |
73.5696 |
Root analytic conductor: |
8.57727 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(701,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :1), i)
|
Particular Values
L(23) |
≈ |
1.065067354 |
L(21) |
≈ |
1.065067354 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+7.15T+49T2 |
| 11 | 1−5.06iT−121T2 |
| 13 | 1−3.12T+169T2 |
| 17 | 1+8.72iT−289T2 |
| 19 | 1−20.1T+361T2 |
| 23 | 1+14.7iT−529T2 |
| 29 | 1−39.7iT−841T2 |
| 31 | 1+39.3T+961T2 |
| 37 | 1+34.8T+1.36e3T2 |
| 41 | 1+13.2iT−1.68e3T2 |
| 43 | 1−66.6T+1.84e3T2 |
| 47 | 1−16.9iT−2.20e3T2 |
| 53 | 1+4.62iT−2.80e3T2 |
| 59 | 1−25.7iT−3.48e3T2 |
| 61 | 1+12.1T+3.72e3T2 |
| 67 | 1+106.T+4.48e3T2 |
| 71 | 1−101.iT−5.04e3T2 |
| 73 | 1−23.2T+5.32e3T2 |
| 79 | 1−66.5T+6.24e3T2 |
| 83 | 1+144.iT−6.88e3T2 |
| 89 | 1+154.iT−7.92e3T2 |
| 97 | 1−175.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.708998240726924756604261309501, −7.37809717075041888596850145852, −7.17212408899163480649583958098, −6.15292004651090441203751021510, −5.43514934532452236371686198713, −4.52636604765844613678453560514, −3.49139664574763532968192392191, −2.85821292579746878124116397397, −1.60259326198301978677811521371, −0.29472335673806291694807542070,
0.931021552056745294780123316688, 2.23027330545164702421569079494, 3.36023176918669929384655724894, 3.80439333566493039030870099879, 5.06816852565246859853560033522, 5.89186355691402580983322896436, 6.43131279299327212312906004501, 7.41319655171403216542803211092, 7.980923059344348806781883849728, 9.095804991438078334135959343604