L(s) = 1 | + (2.41 − i)3-s + (0.707 + 1.70i)5-s + (−0.414 + i)7-s + (2.70 − 2.70i)9-s + (1 + 0.414i)11-s + 1.41i·13-s + (3.41 + 3.41i)15-s + (−2.82 − 3i)17-s + (−3.41 − 3.41i)19-s + 2.82i·21-s + (−3.82 − 1.58i)23-s + (1.12 − 1.12i)25-s + (0.828 − 2i)27-s + (−1.70 − 4.12i)29-s + (3 − 1.24i)31-s + ⋯ |
L(s) = 1 | + (1.39 − 0.577i)3-s + (0.316 + 0.763i)5-s + (−0.156 + 0.377i)7-s + (0.902 − 0.902i)9-s + (0.301 + 0.124i)11-s + 0.392i·13-s + (0.881 + 0.881i)15-s + (−0.685 − 0.727i)17-s + (−0.783 − 0.783i)19-s + 0.617i·21-s + (−0.798 − 0.330i)23-s + (0.224 − 0.224i)25-s + (0.159 − 0.384i)27-s + (−0.317 − 0.765i)29-s + (0.538 − 0.223i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.93772 - 0.0736294i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93772 - 0.0736294i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (2.82 + 3i)T \) |
good | 3 | \( 1 + (-2.41 + i)T + (2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 1.70i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (0.414 - i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-1 - 0.414i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.41iT - 13T^{2} \) |
| 19 | \( 1 + (3.41 + 3.41i)T + 19iT^{2} \) |
| 23 | \( 1 + (3.82 + 1.58i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (1.70 + 4.12i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-3 + 1.24i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (3.53 - 1.46i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (3.12 - 7.53i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-3.41 + 3.41i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.8iT - 47T^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.24 + 4.24i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.53 + 8.53i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 6.82T + 67T^{2} \) |
| 71 | \( 1 + (12.0 - 5i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (2.05 + 4.94i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-3.82 - 1.58i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-0.242 - 0.242i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.41iT - 89T^{2} \) |
| 97 | \( 1 + (-2.46 - 5.94i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02072775979417077269982405828, −10.93388494272437834974763789642, −9.720438441590880696923915964725, −8.988206897425960613572984067446, −8.092471997477409696003280294666, −7.00257325808556683222491431261, −6.28561178043512675991772289175, −4.38150992762983267362319106527, −2.90590682010912757027268591678, −2.14864973990715317652361619263,
1.91407434735326771740838176881, 3.49566776552730642040179248695, 4.34518154935611927329300234271, 5.76537630384345944888022446326, 7.24507130110391551629166244178, 8.573018150890803681354530335662, 8.744649954215858435559625316422, 9.951360375661317932386623118492, 10.58011584697175319456427712351, 12.11857676414801084560969025568